Background/Aims: Anti-immobility actions of insulin in diabetic rats that are subjected to the forced swim test (FST) have been reported. In this test, low doses of antidepressants exert actions after long-term treatment, without affecting locomotor activity in healthy rats. Few studies have compared acute and chronic actions of insulin with antidepressants in healthy rats. Methods: We hypothesized that if insulin exerts a true anti-immobility action, then its effects must be comparable to fluoxetine in both a 1-day treatment regimen and a 21-day treatment regimen in healthy, gonadally intact female Wistar rats. Results: The results showed that low levels of glycemia were produced by all treatments, including fluoxetine, and glycemia was lower in proestrus-estrus than in diestrus-metestrus. None of the treatments or regimens produced actions on indicators of anxiety in the elevated plus maze. Insulin in the 1-day regimen increased the number of crossings and rearings in the open field test and caused a low cumulative immobility time in the FST. These actions disappeared in the 21-day regimen. Compared with the other treatments, fluoxetine treatment alone or combined with insulin produced a longer latency to the first period of immobility and a shorter immobility time in the chronic regimen in the FST, without affecting locomotor activity, and more pronounced actions were observed in proestrus-estrus (i.e., a true anti-immobility effect). Conclusion: These results indicate that insulin does not produce a true antidepressant action in healthy rats. The purported antidepressant effects that were observed were instead attributable to an increase in locomotor activity only in the 1-day regimen.

1.
Mergenthaler
P
,
Lindauer
U
,
Dienel
GA
,
Meisel
A
.
Sugar for the brain: the role of glucose in physiological and pathological brain function
.
Trends Neurosci
.
2013
;
36
(
10
):
587
97
. .
2.
Schulingkamp
RJ
,
Pagano
TC
,
Hung
D
,
Raffa
RB
.
Insulin receptors and insulin action in the brain: review and clinical implications
.
Neurosci Biobehav Rev
.
2000
;
24
(
8
):
855
72
. .
3.
Pomytkin
I
,
Costa-Nunes
JP
,
Kasatkin
V
,
Veniaminova
E
,
Demchenko
A
,
Lyundup
A
,
Insulin receptor in the brain: mechanisms of activation and the role in the CNS pathology and treatment
.
CNS Neurosci Ther
.
2018
;
24
(
9
):
763
74
. .
4.
Zhao
WQ
,
Alkon
DL
.
Role of insulin and insulin receptor in learning and memory
.
Mol Cell Endocrinol
.
2001
;
177
(
1–2
):
125
34
. .
5.
Qiu
WQ
,
Folstein
MF
.
Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimer’s disease: review and hypothesis
.
Neurobiol Aging
.
2006
;
27
:
190
8
.
6.
Gerozissis
K
,
Kyriaki
G
.
Brain insulin: regulation, mechanisms of action and functions
.
Cell Mol Neurobiol
.
2003
;
23
(
1
):
1
25
. .
7.
Tramunt
B
,
Smati
S
,
Grandgeorge
N
,
Lenfant
F
,
Arnal
JF
,
Montagner
A
,
Sex differences in metabolic regulation and diabetes susceptibility
.
Diabetologia
.
2020
;
63
(
3
):
453
61
. .
8.
González
C
,
Alonso
A
,
Alvarez
N
,
Díaz
F
,
Martínez
M
,
Fernández
S
,
Role of 17β-estradiol and/or progesterone on insulin sensitivity in the rat: implications during pregnancy
.
J Endocrinology
.
2000
;
166
:
283
91
.
9.
Esmailidehaj
M
,
Kuchakzade
F
,
Rezvani
ME
,
Farhadi
Z
,
Esmaeili
H
,
Azizian
H
.
17β-Estradiol improves insulin signalling and insulin resistance in the aged female hearts: role of inflammatory and anti-inflammatory cytokines
.
Life Sci
.
2020
;
253
:
117673
.
10.
Castagné
V
,
Moser
P
,
Roux
S
,
Porsolt
RD
.
Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice
.
Curr Protoc Neurosci
.
2011
;
Chapter 8
:Unit 8.10A. .
11.
Contreras
CM
,
Martínez-Mota
L
,
Saavedra
M
.
Desipramine restricts estral cycle oscillations in swimming
.
Prog Neuropsychopharmacol Biol Psychiatry
.
1998
;
22
(
7
):
1121
8
. .
12.
Castagne
V
,
Porsolt
RD
,
Moser
P
.
Use of latency to immobility improves detection of antidepressant-like activity in the behavioral despair test in the mouse
.
Eur J Pharmacol
.
2009
;
616
:
128
33
.
13.
Haider
S
,
Ahmed
S
,
Tabassum
S
,
Memon
Z
,
Ikram
M
,
Haleem
DJ
.
Streptozotocin-induced insulin deficiency leads to development of behavioral deficits in rats
.
Acta Neurol Belg
.
2013
;
113
(
1
):
35
41
. .
14.
Gupta
D
,
Kurhe
Y
,
Radhakrishnan
M
.
Antidepressant effects of insulin in streptozotocin induced diabetic mice: modulation of brain serotonin system
.
Physiol Behav
.
2014
;
129
:
73
8
. .
15.
Sestile
CC
,
Maraschin
JC
,
Rangel
MP
,
Cuman
RK
,
Audi
EA
.
Antidepressant-like effect of insulin in streptozotocin-induced type 2 diabetes mellitus rats
.
Basic Clin Pharmacol Toxicol
.
2016
;
119
(
3
):
243
8
. .
16.
Hilakivi-Clarke
LA
,
Wozniak
KM
,
Durcan
MJ
,
Linnoila
M
.
Behavior of streptozotocin-diabetic mice in tests of exploration, locomotion, anxiety, depression and aggression
.
Physiol Behav
.
1990
;
48
(
3
):
429
33
. .
17.
Wayhs
CA
,
Manfredini
V
,
Sitta
A
,
Deon
M
,
Ribas
G
,
Vanzin
C
,
Protein and lipid oxidative damage in streptozotocin-induced diabetic rats submitted to forced swimming test: the insulin and clonazepam effect
.
Metab Brain Dis
.
2010
;
25
(
3
):
297
304
. .
18.
Wayhs
CA
,
Mescka
CP
,
Vanzin
CS
,
Ribas
GS
,
Guerreiro
G
,
Nin
MS
,
Brain effect of insulin and clonazepam in diabetic rats under depressive-like behavior
.
Metab Brain Dis
.
2013
;
28
(
4
):
563
70
. .
19.
Wayhs
CA
,
Mescka
CP
,
Guerreiro
G
,
Moraes
TB
,
Jacques
CE
,
Rosa
AP
,
Diabetic encephalopathy-related depression: experimental evidence that insulin and clonazepam restore antioxidant status in rat brain
.
Cell Biochem Funct
.
2014
;
32
(
8
):
711
9
. .
20.
Ho
N
,
Balu
DT
,
Hilario
MR
,
Blendy
JA
,
Lucki
I
.
Depressive phenotypes evoked by experimental diabetes are reversed by insulin
.
Physiol Behav
.
2012
;
105
(
3
):
702
8
. .
21.
Contreras
CM
,
Gutiérrez-García
AG
.
Cognitive impairment in diabetes and poor glucose utilization in the intracellular neural milieu
.
Med Hypotheses
.
2017
;
104
:
160
5
. .
22.
Fullerton
B
,
Siebenhofer
A
,
Jeitler
K
,
Horvath
K
,
Semlitsch
T
,
Berghold
A
,
Short-acting insulin analogues versus regular human insulin for adult, non-pregnant persons with type 2 diabetes mellitus
.
Cochrane Database Syst Rev
.
2018
;
12
(
12
):
CD013228
. .
23.
Ferreira
MF
,
Castanheira
L
,
Sebastião
AM
,
Telles-Correia
D
.
Depression assessment in clinical trials and pre-clinical tests: a critical review
.
Curr Top Med Chem
.
2018
;
18
(
19
):
1677
703
. .
24.
National Research Council
.
Guide for the care and use of laboratory animals (publication no. 80–23)
.
Washington DC
:
National Academies Press
;
2004
.
25.
Deurveilher
S
,
Seary
ME
,
Semba
K
.
Ovarian hormones promote recovery from sleep deprivation by increasing sleep intensity in middle-aged ovariectomized rats
.
Horm Behav
.
2016
;
63
(
4
):
566
76
. .
26.
Espinosa-Raya
J
,
Neri-Gómez
T
,
Orozco-Suárez
S
,
Campos
MG
,
Guerra-Araiza
C
.
Chronic administration of tibolone modulates anxiety-like behavior and enhances cognitive performance in ovariectomized rats
.
Horm Behav
.
2012
;
61
(
1
):
76
83
. .
27.
Gu
S
,
Jing
L
,
Li
Y
,
Huang
JH
,
Wang
F
.
Stress induced hormone and neuromodulator changes in menopausal depressive rats
.
Front Psychiatry
.
2018
;
9
:
253
. .
28.
Contreras
CM
,
Rodríguez-Landa
JF
,
Gutiérrez-García
AG
,
Bernal-Morales
B
.
The lowest effective dose of fluoxetine in the forced swim test significantly affects the firing rate of lateral septal nucleus neurones in the rat
.
J Psychopharmacol
.
2001
;
15
(
4
):
231
6
. .
29.
Contreras
CM
,
Gutiérrez-García
AG
,
Moreno-Cortés
ML
.
Responsivity of lateral septum-mPFC connections in alloxan-induced hyperglycemia
.
Behav Brain Res
.
2019
;
368
:
111919
. .
30.
Cohen
H
,
Matar
MA
,
Joseph
Z
.
Animal models of post-traumatic stress disorder
.
Curr Protoc Neurosci
.
2013
;
Chapter 9
:Unit 9.45. .
31.
Borsini
F
.
Role of the serotonergic system in the forced swimming test
.
Neurosci Biobehav Rev
.
1995
;
19
(
3
):
377
95
. .
32.
Yener
T
,
Turkkani Tunc
A
,
Aslan
H
,
Aytan
H
,
Cantug Caliskan
A
.
Determination of oestrous cycle of the rats by direct examination: how reliable?
Anat Histol Embryol
.
2007
;
36
(
1
):
75
7
. .
33.
Escalante-Pulido
JM
,
Alpizar-Salazar
M
.
Changes in insulin sensitivity, secretion and glucose effectiveness during menstrual cycle
.
Arch Med Res
.
1999
;
30
:
19
22
.
34.
Yki-Jarvinen
H
.
Insulin sensitivity during the menstrual cycle
.
J Clin Endocrinol Metab
.
1984
;
59
:
350
3
.
35.
Trout
KK
,
Basel-Brown
L
,
Rickels
MR
,
Schutta
MH
,
Petrova
M
,
Freeman
EW
,
Insulin sensitivity, food intake, and cravings with premenstrual syndrome: a pilot study
.
J Womens Health
.
2008
;
17
(
4
):
657
65
. .
36.
Miles
PD
,
Higo
K
,
Olefsky
JM
.
Exercise-stimulated glucose turnover in the rat is impaired by glucosamine infusion
.
Diabetes
.
2001
;
50
(
1
):
139
42
. .
37.
Moraes-Silva
IC
,
Mostarda
C
,
Moreira
ED
,
Silva
KA
,
dos Santos
F
,
de Angelis
K
,
Preventive role of exercise training in autonomic, hemodynamic, and metabolic parameters in rats under high risk of metabolic syndrome development
.
J Appl Physiol
.
2013
;
114
(
6
):
786
91
. .
38.
Munoz
VR
,
Gaspar
RC
,
Kuga
GK
,
da Rocha
AL
,
Crisol
BM
,
Botezelli
JD
,
Exercise increases Rho-kinase activity and insulin signaling in skeletal muscle
.
J Cell Physiol
.
2018
;
233
:
4791
800
.
39.
Tharmaraja
T
,
Stahl
D
,
Hopkins
CWP
,
Persaud
SJ
,
Jones
PM
,
Ismail
K
,
The association between selective serotonin reuptake inhibitors and glycemia: a systematic review and meta-analysis of randomized controlled trials
.
Psychosom Med
.
2019
;
81
(
7
):
570
83
. .
40.
Briscoe
VJ
,
Ertl
AC
,
Tate
DB
,
Davis
SN
.
Effects of the selective serotonin reuptake inhibitor fluoxetine on counterregulatory responses to hypoglycemia in individuals with type 1 diabetes
.
Diabetes
.
2008
;
57
(
12
):
3315
22
. .
41.
Yamada
J
,
Sugimoto
Y
,
Inoue
K
.
Selective serotonin reuptake inhibitors fluoxetine and fluvoxamine induce hyperglycemia by different mechanisms
.
Eur J Pharmacol
.
1999
;
382
(
3
):
211
5
. .
42.
Carvalho
F
,
Barros
D
,
Silva
J
,
Rezende
E
,
Soares
M
,
Fregoneze
J
,
Hyperglycemia induced by acute central fluoxetine administration: role of the central CRH system and 5-HT3 receptors
.
Neuropeptides
.
2004
;
38
(
2–3
):
98
105
. .
43.
Diepenbroek
C
,
Rijnsburger
M
,
Eggels
L
,
van Megen
KM
,
Ackermans
MT
,
Fliers
E
,
Infusion of fluoxetine, a serotonin reuptake inhibitor, in the shell region of the nucleus accumbens increases blood glucose concentrations in rats
.
Neurosci Lett
.
2017
;
637
:
85
90
. .
44.
Glombik
K
,
Slusarczyk
J
,
Trojan
E
,
Chamera
K
,
Budziszewska
B
,
Lason
W
,
Regulation of insulin receptor phosphorylation in the brains of prenatally stressed rats: new insight into the benefits of antidepressant drug treatment
.
Eur Neuropsychopharmacol
.
2017
;
27
:
120
31
.
45.
Olivares-Nazario
M
,
Fernández-Guasti
A
,
Martínez-Mota
L
.
Age-related changes in the antidepressant-like effect of desipramine and fluoxetine in the rat forced-swim test
.
Behav Pharmacol
.
2016
;
27
(
1
):
22
8
. .
46.
Fernández-Guasti
A
,
Olivares-Nazario
M
,
Reyes
R
,
Martínez-Mota
L
.
Sex and age differences in the antidepressant-like effect of fluoxetine in the forced swim test
.
Pharmacol Biochem Behav
.
2017
;
152
:
81
9
. .
47.
Bridge
JA
,
Iyengar
S
,
Salary
CB
,
Barbe
RP
,
Birmaher
B
,
Pincus
HA
,
Clinical response and risk for reported suicidal ideation and suicide attempts in pediatric antidepressant treatment: a meta-analysis of randomized controlled trials
.
JAMA
.
2007
;
297
(
15
):
1683
96
. .
48.
He
H
,
Xiang
Y
,
Gao
F
,
Bai
L
,
Gao
F
,
Fan
Y
,
Comparative efficacy and acceptability of first-line drugs for the acute treatment of generalized anxiety disorder in adults: a network meta-analysis
.
J Psychiatr Res
.
2019
;
118
:
21
30
. .
49.
Slee
A
,
Nazareth
I
,
Bondaronek
P
,
Liu
Y
,
Cheng
Z
,
Freemantle
N
.
Pharmacological treatments for generalised anxiety disorder: a systematic review and network meta-analysis
.
Lancet
.
2019
;
393
(
10173
):
768
77
. .
50.
Beirami
E
,
Oryan
S
,
Seyedhosseini Tamijani
SM
,
Ahmadiani
A
,
Dargahi
L
.
Intranasal insulin treatment alleviates methamphetamine induced anxiety-like behavior and neuroinflammation
.
Neurosci Lett
.
2017
;
660
:
122
9
. .
51.
Kraeuter
AK
,
Guest
PC
,
Sarnyai
Z
.
The elevated plus maze test for measuring anxiety-like behavior in rodents
.
Methods Mol Biol
.
2019
;
1916
:
69
74
. .
52.
Pellow
S
,
Chopin
P
,
File
SE
,
Briley
M
.
Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat
.
J Neurosci Methods
.
1985
;
14
(
3
):
149
67
. .
53.
Walf
AA
,
Frye
CA
.
The use of the elevated plus maze as an assay of anxiety-related behavior in rodents
.
Nat Protoc
.
2007
;
2
(
2
):
322
8
. .
54.
Robert
G
,
Drapier
D
,
Bentué-Ferrer
D
,
Renault
A
,
Reymann
JM
.
Acute and chronic anxiogenic-like response to fluoxetine in rats in the elevated plus-maze: modulation by stressful handling
.
Behav Brain Res
.
2011
;
220
(
2
):
344
8
. .
55.
Sorregotti
T
,
Mendes-Gomes
J
,
Rico
JL
,
Rodgers
RJ
,
Nunes-de-Souza
RL
.
Ethopharmacological analysis of the open elevated plus-maze in mice
.
Behav Brain Res
.
2013
;
246
:
76
85
. .
56.
Gomez
F
,
Venero
C
,
Viveros
MP
,
García-García
L
.
Short-term fluoxetine treatment induces neuroendocrine and behavioral anxiogenic-like responses in adolescent male rats
.
Exp Brain Res
.
2015
;
233
(
3
):
983
95
. .
57.
Bandelow
B
,
Zohar
J
,
Hollander
E
,
Kasper
S
,
Möller
HJ
,
Zohar
J
,
World federation of societies of biological psychiatry (WFSBP) guidelines for the pharmacological treatment of anxiety, obsessive-compulsive and post-traumatic stress disorders: first revision
.
World J Biol Psychiatry
.
2008
;
9
(
4
):
248
312
.
58.
Thibaut
F
.
Anxiety disorders: a review of current literature
.
Dialogues Clin Neurosci
.
2017
;
19
(
2
):
87
8
.
59.
Bandelow
B
,
Michaelis
S
,
Wedekind
D
.
Treatment of anxiety disorders
.
Dialogues Clin Neurosci
.
2017
;
19
(
2
):
93
107
.
60.
Liebscher
C
,
Wittmann
A
,
Gechter
J
,
Schlagenhauf
F
,
Lueken
U
,
Plag
J
,
Facing the fear: clinical and neural effects of cognitive behavioural and pharmacotherapy in panic disorder with agoraphobia
.
Eur Neuropsychopharmacol
.
2016
;
26
(
3
):
431
44
.
61.
Lapmanee
S
,
Charoenphandhu
J
,
Charoenphandhu
N
.
Beneficial effects of fluoxetine, reboxetine, venlafaxine, and voluntary running exercise in stressed male rats with anxiety- and depression-like behaviors
.
Behav Brain Res
.
2013
;
250
:
316
25
. .
62.
Martinez-Mota
L
,
Contreras
CM
,
Saavedra
M
.
Progesterone reduces immobility in rats forced to swim
.
Arch Med Res
.
1999
;
30
:
286
9
.
63.
Koek
W
,
Sandoval
TL
,
Daws
LC
.
Effects of the antidepressants desipramine and fluvoxamine on latency to immobility and duration of immobility in the forced swim test in adult male C57BL/6J mice
.
Behav Pharmacol
.
2018
;
29
(
5
):
453
6
. .
64.
Detke
MJ
,
Johnson
J
,
Lucki
I
.
Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression
.
Exp Clin Psychopharmacol
.
1997
;
5
(
2
):
107
12
. .
65.
Dulawa
SC
,
Holick
KA
,
Gundersen
B
,
Hen
R
.
Effects of chronic fluoxetine in animal models of anxiety and depression
.
Neuropsychopharmacology
.
2004
;
29
(
7
):
1321
30
. .
66.
Cryan
JF
,
Page
ME
,
Lucki
I
.
Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment
.
Psychopharmacology
.
2005
;
182
(
3
):
335
44
. .
67.
Sheehan
TP
,
Chambers
RA
,
Russell
DS
.
Regulation of affect by the lateral septum: implications for neuropsychiatry
.
Brain Res Brain Res Rev
.
2004
;
46
(
1
):
71
117
. .
68.
Hennige
AM
,
Sartorius
T
,
Lutz
SZ
,
Tschritter
O
,
Preissl
H
,
Hopp
S
,
Insulin-mediated cortical activity in the slow frequency range is diminished in obese mice and promotes physical inactivity
.
Diabetologia
.
2009
;
52
(
11
):
2416
24
. .
69.
Sartorius
T
,
Hennige
AM
,
Fritsche
A
,
Häring
HU
.
Sustained treatment with insulin detemir in mice alters brain activity and locomotion
.
PLoS One
.
2016
;
11
(
9
):
e0162124
. .
70.
Lin
KI
,
Johnson
DR
,
Freund
GG
.
LPS-dependent suppression of social exploration is augmented in type 1 diabetic mice
.
Brain Behav Immun
.
2007
;
21
(
6
):
775
82
. .
71.
Holt
RI
,
Sönksen
PH
.
Growth hormone, IGF-I and insulin and their abuse in sport
.
Br J Pharmacol
.
2008
;
154
(
3
):
542
56
. .
72.
Thevis
M
,
Thomas
A
,
Schänzer
W
.
Insulin
.
Handb Exp Pharmacol
.
2010
;
195
(
195
):
209
26
. .
73.
Dimitriadis
G
,
Mitrou
P
,
Lambadiari
V
,
Maratou
E
,
Raptis
SA
.
Insulin effects in muscle and adipose tissue
.
Diabetes Res Clin Pract
.
2011
;
93 Suppl 1
(
Suppl 1
):
S52
9
. .
74.
Eggleston
EM
,
Jahn
LA
,
Barrett
EJ
.
Hyperinsulinemia rapidly increases human muscle microvascular perfusion but fails to increase muscle insulin clearance: evidence that a saturable process mediates muscle insulin uptake
.
Diabetes
.
2007
;
56
(
12
):
2958
63
. .
75.
Barrett
EJ
,
Wang
H
,
Upchurch
CT
,
Liu
Z
.
Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature
.
Am J Physiol Endocrinol Metab
.
2001
;
301
(
2
):
E252
63
. .
76.
Wolfe
RR
.
Effects of insulin on muscle tissue
.
Curr Opin Clin Nutr Metab Care
.
2000
;
3
(
1
):
67
71
. .
77.
Trommelen
J
,
Groen
BB
,
Hamer
HM
,
de Groot
LC
,
van Loon
LJ
.
Mechanisms in endocrinology: exogenous insulin does not increase muscle protein synthesis rate when administered systemically: a systematic review
.
Eur J Endocrinol
.
2015
;
173
(
1
):
R25
34
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.