Temperament in healthy individuals and mental illness have been conjectured to lie along a continuum of neurobehavioral regulation. This continuum is frequently regarded in dimensional terms, with temperament and mental illness lying at opposite poles along various dimensional descriptors. However, temperament and mental illness are quintessentially dynamical phenomena, and as such there is value in examining what insights can be arrived at through the lens of our current understanding of dynamical systems. The formal study of dynamical systems has led to the development of a host of markers which serve to characterize and classify dynamical systems and which could be used to study temperament and mental illness. The most useful markers for temperament and mental illness apply to time series data and include geometrical markers such as (strange) attractors and repellors and analytical markers such as fluctuation spectroscopy, scaling, entropy, recurrence time. Temperament and mental illness, however, possess fundamental characteristics that present considerable challenges for current dynamical systems approaches: transience, contextuality and emergence. This review discusses the need for time series data and the implications of these three characteristics on the formal study of the continuum and presents a dynamical systems model based upon Whitehead’s Process Theory and the neurochemical Functional Ensemble of Temperament model. The continuum can be understood as second or higher order dynamical phases in a multiscale landscape of superposed dynamical systems. Markers are sought to distinguish the order parameters associated with these phases and the control parameters which describe transitions among these dynamics.

1.
Hirschfeld
RM
,
Klerman
GL
.
Personality attributes and affective disorders
.
Am J Psychiatry
.
1979
Jan
;
136
(
1
):
67
70
.
[PubMed]
0002-953X
2.
Clark
LA
,
Watson
D
,
Mineka
S
.
Temperament, personality, and the mood and anxiety disorders
.
J Abnorm Psychol
.
1994
Feb
;
103
(
1
):
103
16
.
[PubMed]
0021-843X
3.
Watson
D
,
Naragon-Gainey
K
.
Personality, emotions, and the emotional disorders
.
Clin Psychol Sci
.
2014
Jul
;
2
(
4
):
422
42
.
[PubMed]
2167-7026
4.
Trofimova
I
,
Sulis
W
.
The lability of behavior as a marker of comorbid depression and anxiety
.
Adv Biosci Biotechnol
.
2010
;
1
(
3
):
190
9
. 2156-8456
5.
Sulis
W
.
Assessing the continuum between temperament and affective illness: psychiatric and mathematical perspectives
.
Philos Trans R Soc Lond B Biol Sci
.
2018
Apr
;
373
(
1744
):
20170168
.
[PubMed]
0962-8436
6.
Depue
RA
,
Morrone-Strupinsky
JV
.
A neurobehavioral model of affiliative bonding: implications for conceptualizing a human trait of affiliation
.
Behav Brain Sci
.
2005
Jun
;
28
(
3
):
313
50
.
[PubMed]
0140-525X
7.
Gray
JA
.
The neuropsychology of anxiety: an enquiry into the functions of the septo-hippocampal system
.
Oxford
:
Oxford University Press
;
1982
.
8.
Kagan
J
.
Galen’s prophecy: Temperament in human nature
.
Westview Press
;
1997
.
9.
Rusalov
VM
,
Trofimova
IN
.
Structure of Temperament and its Measurement
.
Toronto
:
Psychological Services Press
;
2007
.
10.
Trofimova
I
. The interlocking between functional aspects of activities and a neurochemical model of adult temperament. In:
Arnold
MC
, editor
.
Temperaments: Individual Differences, Social and Environmental Influences and Impact on Quality of Life
.
New York
:
Nova Science Publishers
;
2016
. pp.
77
147
.
11.
Trofimova
I
,
Robbins
TW
.
Temperament and arousal systems: A new synthesis of differential psychology and functional neurochemistry
.
Neurosci Biobehav Rev
.
2016
May
;
64
:
382
402
.
[PubMed]
0149-7634
12.
Cloninger
CR
.
A unified biosocial theory of personality and its role in the development of anxiety states
.
Psychiatr Dev
.
1986
;
4
(
3
):
167
226
.
[PubMed]
0262-9283
13.
Heath
AC
,
Cloninger
CR
,
Martin
NG
.
Testing a model for the genetic structure of personality: a comparison of the personality systems of Cloninger and Eysenck
.
J Pers Soc Psychol
.
1994
Apr
;
66
(
4
):
762
75
.
[PubMed]
0022-3514
14.
Zentner
M
,
Shiner
R
, editors
. Handbook of Temperament. New York: Guilford; 1992. Bennabi D, Vandel P, Papaxanthis C, Pozzo T, Hatten E. Psychomotor retardation in depression: a systematic review of diagnostic, pathophysiologic and therapeutic implications. Biomed Res Internat.
2013
(epub): 158746.
15.
Bennabi D, Vandel P, Papaxanthis C, Pozzo T, Hatten E. Psychomotor Retardation in Depression: A Systematic Review of Diagnostic, Pathophysiologic, and Therapeutic Implications. Biomed Res Int. 2013;2013:158746.
16.
degli Uberti
EC
,
Petraglia
F
,
Bondanelli
M
,
Guo
AL
,
Valentini
A
,
Salvadori
S
, et al.
Involvement of mu-opioid receptors in the modulation of pituitary-adrenal axis in normal and stressed rats
.
J Endocrinol Invest
.
1995
Jan
;
18
(
1
):
1
7
.
[PubMed]
0391-4097
17.
Johnson
SW
,
North
RA
.
Opioids excite dopamine neurons by hyperpolarization of local interneurons
.
J Neurosci
.
1992
Feb
;
12
(
2
):
483
8
.
[PubMed]
0270-6474
18.
Comer
SD
,
Hoenicke
EM
,
Sable
AI
,
McNutt
RW
,
Chang
KJ
,
De Costa
BR
, et al.
Convulsive effects of systemic administration of the delta opioid agonist BW373U86 in mice
.
J Pharmacol Exp Ther
.
1993
Nov
;
267
(
2
):
888
95
.
[PubMed]
0022-3565
19.
Jutkiewicz
EM
,
Rice
KC
,
Traynor
JR
,
Woods
JH
.
Separation of the convulsions and antidepressant-like effects produced by the delta-opioid agonist SNC80 in rats
.
Psychopharmacology (Berl)
.
2005
Nov
;
182
(
4
):
588
96
.
[PubMed]
0033-3158
20.
Blazer
D
,
Steffens
D
.
Textbook of geriatric psychiatry
.
APA Publishing
;
2009
.
21.
Harrington
ME
.
Neurobiological studies of fatigue
.
Prog Neurobiol
.
2012
Nov
;
99
(
2
):
93
105
.
[PubMed]
0301-0082
22.
Krishnan
V
,
Nestler
EJ
.
Linking molecules to mood: new insight into the biology of depression
.
Am J Psychiatry
.
2010
Nov
;
167
(
11
):
1305
20
.
[PubMed]
0002-953X
23.
Strüder
HK
,
Weicker
H
.
Physiology and pathophysiology of the serotonergic system and its implications on mental and physical performance. Part I
.
Int J Sports Med
.
2001
Oct
;
22
(
7
):
467
81
.
[PubMed]
0172-4622
24.
Olmstead
MC
,
Ouagazzal
AM
,
Kieffer
BL
.
Mu and delta opioid receptors oppositely regulate motor impulsivity in the signaled nose poke task
.
PLoS One
.
2009
;
4
(
2
):
e4410
.
[PubMed]
1932-6203
25.
Pradhan
AA
,
Befort
K
,
Nozaki
C
,
Gavériaux-Ruff
C
,
Kieffer
BL
.
The delta opioid receptor: an evolving target for the treatment of brain disorders
.
Trends Pharmacol Sci
.
2011
Oct
;
32
(
10
):
581
90
.
[PubMed]
0165-6147
26.
Bodnar
RJ
.
Endogenous opiates and behavior: 2010
.
Peptides
.
2011
Dec
;
32
(
12
):
2522
52
.
[PubMed]
0196-9781
27.
Tanaka
M
,
Yoshida
M
,
Emoto
H
,
Ishii
H
.
Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: basic studies.
Euro. J. Pharm. 200 405(1-3):397-406.
28.
Takahashi
M
,
Senda
T
,
Tokuyama
S
,
Kaneto
H
.
Further evidence for the implication of a kappa-opioid receptor mechanism in the production of psychological stress-induced analgesia.
Japan J Pharm.
1990
53(4):487-494.
29.
Schwarzer
C.
30 Years of Dynorphins – New insights on their functions in neuropsychiatric diseases. Pharm. Ther. 2099 123(3):353–370.
30.
Simonin
F
,
Gavériaux-Ruff
C
,
Befort
K
,
Matthes
H
,
Lannes
B
,
Micheletti
G
, et al.
kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system
.
Proc Natl Acad Sci USA
.
1995
Jul
;
92
(
15
):
7006
10
.
[PubMed]
0027-8424
31.
Wittmann
W
,
Schunk
E
,
Rosskothen
I
,
Gaburro
S
,
Singewald
N
,
Herzog
H
, et al.
Prodynorphin-derived peptides are critical modulators of anxiety and regulate neurochemistry and corticosterone
.
Neuropsychopharmacology
.
2009
Feb
;
34
(
3
):
775
85
.
[PubMed]
0893-133X
32.
Reyes
BA
,
Johnson
AD
,
Glaser
JD
,
Commons
KG
,
Van Bockstaele
EJ
.
Dynorphin-containing axons directly innervate noradrenergic neurons in the rat nucleus locus coeruleus
.
Neuroscience
.
2007
Mar
;
145
(
3
):
1077
86
.
[PubMed]
0306-4522
33.
Reyes
BA
,
Chavkin
C
,
van Bockstaele
EJ
.
Subcellular targeting of kappa-opioid receptors in the rat nucleus locus coeruleus
.
J Comp Neurol
.
2009
Jan
;
512
(
3
):
419
31
.
[PubMed]
0021-9967
34.
Filliol
D
,
Ghozland
S
,
Chluba
J
,
Martin
M
,
Matthes
HW
,
Simonin
F
, et al.
Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses
.
Nat Genet
.
2000
Jun
;
25
(
2
):
195
200
.
[PubMed]
1061-4036
35.
Trofimova
I
,
Sulis
W
.
There is more to mental illness than negative affect: comprehensive temperament profiles in depression and generalized anxiety
.
BMC Psychiatry
.
2018
May
;
18
(
1
):
125
.
[PubMed]
1471-244X
36.
Trofimova
I
,
Sulis
W
.
Benefits of distinguishing between physical and social-verbal aspects of behaviour: an example of generalized anxiety
.
Front Psychol
.
2016
Mar
;
7
:
338
.
[PubMed]
1664-1078
37.
Trofimova
IN
,
Sulis
W
.
A study of the coupling of FET temperament traits with Major Depression
.
Front Psychol
.
2016
Nov
;
7
:
1848
.
[PubMed]
1664-1078
38.
Trofimova
I
,
Christiansen
J
.
Coupling of temperament traits with mental illness in four age groups
.
Psychol Rep
.
2016
Apr
;
118
(
2
):
387
412
.
[PubMed]
0033-2941
39.
Trofimova
I.
Questioning the “general arousal” models. Open Behavioral Science and Psychology,
2010
4, 1-8.
40.
Trofimova
I
;
IRINA TROFIMOVA
.
An investigation into differences between the structure of temperament and the structure of personality
.
Am J Psychol
.
2010
;
123
(
4
):
467
80
.
[PubMed]
0002-9556
41.
Trofimova
I
,
Sulis
W
.
Is temperament activity-specific? Validation of the Structure of Temperament Questionnaire – Compact (STQ-77)
.
Int J Psychol Psychol Ther
.
2011
;
11
(
3
):
389
400
. Available from: https://www.ijpsy.com/volumen11/num3/306.html1577-7057
42.
Venkatasubramanian
G
,
Keshavan
M.
Biomarkers in Psychiatry – a critique. Ann Neurosci 2016 23. Nelson B, McGorry P, Wichers M, Wigman J, Hartmann J. Moving from static to dynamical models of the onset of mental disorder: a review. JAMA Psychiatr.
2017
.
43.
Nelson B, McGorry P, Wichers M, Wigman J, Hartmann J. Moving from static to dynamical models of the onset of mental disorder: a review. JAMA Psychiatry. 2017 May;74(5):528–34.
44.
Gottschalk
A
,
Bauer
MS
,
Whybrow
PC
.
Evidence of chaotic mood variation in bipolar disorder
.
Arch Gen Psychiatry
.
1995
Nov
;
52
(
11
):
947
59
.
[PubMed]
0003-990X
45.
Guastello
S
,
Koopmans
M
,
Pincus
D
.
Chaos and complexity in psychology
.
Cambridge
:
Cambridge University Press
;
2011
.
46.
Small
M
.
Applied nonlinear time series analysis: applications in physics, physiology and finance
.
Singapore
:
World Scientific
;
2005
.
47.
Kantz
H
,
Schreiber
T
.
Nonlinear time series analysis
.
Cambridge, UK
:
Cambridge University Press
;
2003
.
48.
Pourahmadi
M
,
Noorbaloochi
S
.
Multivariate time series analysis of neuroscience data: some challenges and opportunities
.
Curr Opin Neurobiol
.
2016
Apr
;
37
:
12
5
.
[PubMed]
0959-4388
49.
Aubin
JP
,
Frankowska
H
.
Set valued analysis
.
Boston
:
Birkhauser
;
2009
.
50.
Dufort
PA
,
Lumsden
C
. Dynamics, complexity and computation. In:
Lumsden
C
,
Brandts
W
,
Trainor
EH
, editors
.
Physical theory in Biology
.
Singapore
:
World Scientific
;
1997
. pp.
69
106
.
51.
Sulis
W
,
Gupta
A
. Nonlinear dynamics in psychiatry. In:
Sulis
W
,
Trofimova
I
, editors
.
Nonlinear Dynamics in Life and Social Sciences
.
Amsterdam
:
IOS Press
;
2000
.
52.
Szechtman
H
,
Sulis
W
,
Eilam
D
.
Quinpirole induces compulsive checking behavior in rats: a potential animal model of obsessive-compulsive disorder (OCD)
.
Behav Neurosci
.
1998
Dec
;
112
(
6
):
1475
85
.
[PubMed]
0735-7044
53.
Perez Arribas
I
,
Goodwin
GM
,
Geddes
JR
,
Lyons
T
,
Saunders
KE
.
A signature-based machine learning model for distinguishing bipolar disorder and borderline personality disorder
.
Transl Psychiatry
.
2018
Dec
;
8
(
1
):
274
.
[PubMed]
2158-3188
54.
Tsanas
A
,
Saunders
KE
,
Bilderbeck
AC
,
Palmius
N
,
Osipov
M
,
Clifford
GD
, et al.
Daily longitudinal self-monitoring of mood variability in bipolar disorder and borderline personality disorder
.
J Affect Disord
.
2016
Nov
;
205
:
225
33
.
[PubMed]
0165-0327
55.
Ortiz
A
,
Bradler
K
,
Garnham
J
,
Slaney
C
,
Alda
M
.
Nonlinear dynamics of mood regulation in bipolar disorder
.
Bipolar Disord
.
2015
Mar
;
17
(
2
):
139
49
.
[PubMed]
1398-5647
56.
A
O
,
K
B
,
J
G
,
C
S
,
S
M
,
M
A
.
Nonlinear dynamics of mood regulation in unaffected first-degree relatives of bipolar disorder patients
.
J Affect Disord
.
2019
Jan
;
243
:
274
9
.
[PubMed]
0165-0327
57.
Cutler
CD
,
Neufeld
RW
.
Nonlinear Indices with Applications to Schizophrenia and Bipolar Disorder
.
Nonlinear Dynamics Psychol Life Sci
.
2019
Jan
;
23
(
1
):
17
56
.
[PubMed]
1090-0578
58.
Sree Hari Rao
V
,
Raghvendra Rao
C
,
Yeragani
VK
.
A novel technique to evaluate fluctuations of mood: implications for evaluating course and treatment effects in bipolar/affective disorders
.
Bipolar Disord
.
2006
Oct
;
8
(
5 Pt 1
):
453
66
.
[PubMed]
1398-5647
59.
Moore
PJ
,
Little
MA
,
McSharry
PE
,
Geddes
JR
,
Goodwin
GM
.
Forecasting depression in bipolar disorder
.
IEEE Trans Biomed Eng
.
2012
Oct
;
59
(
10
):
2801
7
.
[PubMed]
0018-9294
60.
Bornas
X
,
Balle
M
,
De la Torre-Luque
A
,
Fiol-Veny
A
,
Llabrés
J
.
Ecological assessment of heart rate complexity: differences between high- and low-anxious adolescents
.
Int J Psychophysiol
.
2015
Oct
;
98
(
1
):
112
8
.
[PubMed]
0167-8760
61.
Tolkunov
D
,
Rubin
D
,
Mujica-Parodi
L
.
Power spectrum scale invariance quantifies limbic dysregulation in trait anxious adults using fMRI: adapting methods optimized for characterizing autonomic dysregulation to neural dynamic time series
.
Neuroimage
.
2010
Mar
;
50
(
1
):
72
80
.
[PubMed]
1053-8119
62.
Fiskum
C
,
Andersen
TG
,
Bornas
X
,
Aslaksen
PM
,
Flaten
MA
,
Jacobsen
K
.
Non-linear Heart Rate Variability as a Discriminator of Internalizing Psychopathology and Negative Affect in Children With Internalizing Problems and Healthy Controls
.
Front Physiol
.
2018
May
;
9
:
561
.
[PubMed]
1664-042X
63.
Summers
CH
.
Social interaction over time, implications for stress responsiveness
.
Integr Comp Biol
.
2002
Jul
;
42
(
3
):
591
9
.
[PubMed]
1540-7063
64.
Fetissov
SO
,
Meguid
MM
,
Chen
C
,
Miyata
,
G
.
Synchronized Release of Dopamine and Serotonin in the Medial and Lateral Hypothalamus of Rats.
Neurosci.
2000
101(3):657-63.
65.
Salomon
RM
,
Johnson
BW
,
Schmidt
DE
.
Central neurochemical ultradian variability in depression
.
Dis Markers
.
2006
;
22
(
1-2
):
65
72
.
[PubMed]
0278-0240
66.
Adolf
JK
,
Voelkle
MC
,
Brose
A
,
Schmiedek
F
.
Capturing Context-Related Change in Emotional Dynamics via Fixed Moderated Time Series Analysis
.
Multivariate Behav Res
.
2017
Jul-Aug
;
52
(
4
):
499
531
.
[PubMed]
0027-3171
67.
Mehraei
M
,
Akcay
N
.
Mood and emotional states prediction by time series methods.
2016
Conference paper. Research Gate.
68.
Bonsall
MB
,
Wallace-Hadrill
SMA
,
Geddes
JR
,
Goodwin
GM.
,
Holmes
EA.
Nonlinear time-series approaches in characterizing mood stability and mood instability in bipolar disorder.
Pro Biol Sci.
2012
279:916-924.
69.
Bonsall
MB
,
Geddes
JR
,
Goodwin
GM
,
Holmes
EA
.
Bipolar disorder dynamics: affective instabilities, relaxation oscillations and noise
.
J R Soc Interface
.
2015
Nov
;
12
(
112
):
L20150670
.
[PubMed]
1742-5689
70.
Holmes
EA
,
Bonsall
MB
,
Hales
SA
,
Mitchell
H
,
Renner
F
,
Blackwell
SE
, et al.
Applications of time-series analysis to mood fluctuations in bipolar disorder to promote treatment innovation: a case series.
Translat Psychiatry.
2016
6:e720.
71.
Mandell
AJ
,
Selz
KA
.
Nonlinear dynamical patterns as personality theory for neurobiology and psychiatry
.
Psychiatry
.
1995
Nov
;
58
(
4
):
371
90
.
[PubMed]
0033-2747
72.
Kaplan
D
,
Goldberger
A
.
Chaos in cardiology
.
J Cardiovasc Electrophysiol
.
1991
;
2
(
4
):
342
54
. 1045-3873
73.
Flower
G
,
Wong-Lin
K
.
Reduced computational models of serotonin synthesis, release and uptake.
IEEE trans Biomed Engr.
2013
DOI: .
74.
Cullen
M
,
Wong-Lin
K
.
Analysis of a computational model of dopamine synthesis and release through perturbation
.
IEEE Int Conf Bioinformatics Biomedicine
;
2014
.
75.
Best
J
,
Reed
M
,
Nijhout
HF
.
Models of dopaminergic and serotonergic signaling
.
Pharmacopsychiatry
.
2010
May
;
43
(
S 01
Suppl 1
):
S61
6
.
[PubMed]
0176-3679
76.
Best
JA
,
Nijhout
HF
,
Reed
MC
.
Homeostatic mechanisms in dopamine synthesis and release: a mathematical model
.
Theor Biol Med Model
.
2009
Sep
;
6
(
1
):
21
.
[PubMed]
1742-4682
77.
Best
J
,
Nijhout
HF
,
Reed
M
.
Serotonin synthesis, release and reuptake in terminals: a mathematical model
.
Theor Biol Med Model
.
2010
Aug
;
7
(
34
):
34
. Available from: http://www.tbiomed.com/content/7/1/34
[PubMed]
1742-4682
78.
Qi
Z
,
Miller
GW
,
Voit
EO
.
Computational systems analysis of dopamine metabolism
.
PLoS One
.
2008
Jun
;
3
(
6
):
e2444
.
[PubMed]
1932-6203
79.
Stratmann
P
,
Albu-Schäffer
A
,
Jörntell
H
.
Scaling our world View: how monamines can put context into brain circuitry
.
Front Cell Neurosci
.
2018
Dec
;
12
:
506
.
[PubMed]
1662-5102
80.
Looijestijn
J
,
Blom
JD
,
Aleman
A
,
Hoek
HW
,
Goekoop
R
.
An integrated network model of psychotic symptoms
.
Neurosci Biobehav Rev
.
2015
Dec
;
59
:
238
50
.
[PubMed]
0149-7634
81.
Maia
TV
,
Huys
QJ
,
Frank
MJ
.
Theory-based computational psychiatry
.
Biol Psychiatry
.
2017
Sep
;
82
(
6
):
382
4
.
[PubMed]
0006-3223
82.
Adams
R
,
Huys
Q
, Roiser J. Computational psychiatry: towards a mathematically informed understanding of mental illness. Neurol Neurosurg Psychiatry.
2016
87:53-63.
83.
Huys
QJ
,
Moutoussis
M
,
Williams
J
.
Are computational models of any use to psychiatry?
Neural Netw
.
2011
Aug
;
24
(
6
):
544
51
.
[PubMed]
0893-6080
84.
Tretter
F
,
Albus
M
. Systems biology and psychiatry – modelling molecular and cellular networks of mental disorders. Pharacopsychiatry.
2008
41(suppl. 1):S2-S18.
85.
Montague
PR
,
Dolan
RJ
,
Friston
KJ
,
Dayan
P
.
Computational psychiatry
.
Trends Cogn Sci
.
2012
Jan
;
16
(
1
):
72
80
.
[PubMed]
1364-6613
86.
Caselles
A
,
Micó
JC
,
Amigó
S
.
Cocaine addiction and personality: a mathematical model
.
Br J Math Stat Psychol
.
2010
May
;
63
(
Pt 2
):
449
80
.
[PubMed]
0007-1102
87.
Revelle
W
,
Condon
D
.
A model for personality at three levels
.
J Res Pers
.
2015
;
56
:
70
81
. 0092-6566
88.
Boldrini
M
,
Placidi
G
,
Marazziti
D
.
Applications of chaos theories to psychiatry: a review and future perspectives
.
CNS Spectr
.
1998
;
3
(
1
):
22
9
. 1092-8529
89.
Bystriksty
A
,
Nierenberg
A
,
Feusner
J
,
Rabinovich
M
.
Computational non-linear dynamical psychiatry: A new methodological paradigm for diagnosis and course of illness
.
J Psychiatr Res
.
2011
;
•••
: 0022-3956
90.
King
R
,
Barchas
JD
,
Huberman
B
. Theoretical psychopathology: An application of dynamical systems theory to human behaviour. In:
Basar
E
,
Flohr
H
,
Haken
H
,
Mandell
AJ
, editors
.
Synergetics of the brain. Springer Series in Synergetics
.
Volume 23
.
Berlin
:
Springer
;
1983
.
91.
Whiting
H
, editor
.
Human motor actions: Bernstein reassessed
.
New York (NY)
:
North-Holland
;
1984
.
92.
Trofimova
I
.
Functional constructivism: In search of formal descriptors
.
Nonlin Dynam Psychol Life Sci
;
2017
. pp.
441
74
.
93.
Trofimova
I
.
Phenomena of functional differentiation and fractal functionality. Complex Systems Theory and Applications
.
WIT Press
;
2016
.
94.
Quirk
GJ
,
Muller
RU
,
Kubie
JL
.
The firing of hippocampal place cells in the dark depends on the rat’s recent experience
.
J Neurosci
.
1990
Jun
;
10
(
6
):
2008
17
.
[PubMed]
0270-6474
95.
Ziv
Y
,
Burns
LD
,
Cocker
ED
,
Hamel
EO
,
Ghosh
KK
,
Kitch
LJ
, et al.
Long-term dynamics of CA1 hippocampal place codes
.
Nat Neurosci
.
2013
Mar
;
16
(
3
):
264
6
.
[PubMed]
1097-6256
96.
Barry
DN
,
Maguire
EA
.
Consolidating the case for transient hippocampal memory traces
.
Trends Cogn Sci
.
2019
Aug
;
23
(
8
):
635
6
.
[PubMed]
1364-6613
97.
Jung
C
.
Psychological types
.
Princeton
:
Pricenton Univesity Press
;
1971
.
98.
Buzsaki
G
.
The brain from inside out
.
Oxford
:
Oxford University Press
;
2019
.
99.
Sulis
W
.
Transients as the basis for information flow in complex adaptive systems
.
Entropy (Basel)
.
2019
;
21
(
1
):
94
. 1099-4300
100.
Khrennikov
A
.
Ubiquitous quantum structure
.
New York
:
Springer
;
2010
.
101.
Sulis
W
. Collective intelligence: Observations and models. In:
Guastello
S
,
Koopmans
M
,
Pincus
D
, editors
.
Chaos and complexity in psychology
.
Cambridge
:
Cambridge University Press
;
2009
. pp.
41
72
.
102.
Sasaki
T
,
Pratt
S
.
Emergence of group rationality from irrational individuals
.
Behav Ecol
.
2011
;
22
(
2
):
276
81
. 0198-5841
103.
Ma
T
,
Wang
S
.
Phase Transition Dynamics
.
New York
:
Springer
;
2019
.
104.
Pérez-Espigares
C
,
Hurtado
PI
.
Sampling rare events across dynamical phase transitions
.
Chaos
.
2019
Aug
;
29
(
8
):
083106
.
[PubMed]
1054-1500
105.
Shpielberg
O
,
Nemoto
T
,
Caetano
J
.
Universality in dynamical phases of diffusive systems
.
Phys Rev E
.
2018
;
98
(
5
):
052116
. 2470-0045
106.
Popkov
V
,
Schadschneider
A
,
Schmidt
J
,
Schütz
GM
.
Fibonacci family of dynamical universality classes
.
Proc Natl Acad Sci USA
.
2015
Oct
;
112
(
41
):
12645
50
.
[PubMed]
0027-8424
107.
Steyn-Ross
DA
,
Steyn-Ross
M
, editors
.
Modeling phase transitions in the brain
.
New York
:
Springer
;
2010
.
108.
Lambertz
M
,
Vandenhouten
R
,
Grebe
R
,
Langhorst
P
.
Phase transitions in the common brainstem and related systems investigated by nonstationary time series analysis
.
J Auton Nerv Syst
.
2000
Jan
;
78
(
2-3
):
141
57
.
[PubMed]
0165-1838
109.
Sulis
W
. Driven Cellular Automata, Adaptation, and the Binding Problem. In:
Moran
F
,
Moreno
A
,
Merelo
JJ
,
Chacon
P
, editors
.
Advances in Artifical Life, Lectures Notes in Artificial Intelligence 929
.
New York
:
Springer-Verlag
;
1995
. pp.
824
40
.
110.
Sulis
W
. TIGoRS and Neural Codes. In:
Sulis
W
,
Combs
A
, editors
.
Nonlinear Dynamics in Human Behaviour
.
Singapore
:
World Scientific
;
1995
.
111.
Sulis
W.
Synchronization, TIGoRS, and Information Flow in Complex Systems: Dispositional Cellular Automata. NDPLS
2016
20(2):293-317.
112.
Sulis
W
. Driven Cellular Automata. In Nadel L, Stein D, editors. Lectures on Complex Systems. Lecture Volume VI in the Santa Fe Institute Studies in the Sciences of Complexity. New York: Addison-Wesley,
1993
; pp. 565-578.
113.
Freeman
W
.
Neurodynamics: An exploration in mesoscopic brain dynamics
.
New York (NY)
:
Springer
;
2000
.
114.
Freeman
W
.
How brains make up their minds
.
New York (NY)
:
Columbia University Press
;
2001
.
115.
Freeman
WJ
.
A pseudo-equilibrium thermodynamic model of information processing in nonlinear brain dynamics
.
Neural Netw
.
2008
Mar-Apr
;
21
(
2-3
):
257
65
.
[PubMed]
0893-6080
116.
Kozma
R
,
Freeman
W
.
Cognitive phase transitions in the cerebral cortex: Enhancing the neuron doctrine by modeling neural fields
.
New York (NY)
:
Springer
;
2015
.
117.
Freeman
WJ
,
Holmes
M
,
West
G
,
Vanhatalo
S
.
Dynamics of human neocortex that optimizes its stability and flexibility
.
Int J Intell Syst
.
2006
;
21
(
9
):
881
901
. 0884-8173
118.
Cocchi
L
,
Gollo
L
,
Zalesky
A
,
Breakspear
M
.
Criticality in the brain: A synthesis of neurobiology, models and cognition.
2017
Preprint arXiv: 1707.05952. Werner G. Brain dynamics across levels of organization. Preprint cogprints.org/5275/1/braindynamics.pdf
119.
Werner G. Brain dynamics across levels of organization. Preprint cogprints.org/5275/1/braindynamics.pdf.
120.
di Santo
S
,
Villegas
P
,
Burioni
R
,
Munoz
M
.
Laudau-Ginzburg theory of cortex dynamics: scale-free avalanches emerge at the edge of synchronization.
PNAS
2018
doi :/.
121.
Scheffer
M
,
Carpenter
SR
,
Lenton
TM
,
Bascompte
J
,
Brock
W
,
Dakos
V
, et al.
Anticipating critical transitions
.
Science
.
2012
Oct
;
338
(
6105
):
344
8
.
[PubMed]
0036-8075
123.
Olthof
M
,
Hasselman
F
,
Strunk
G
,
van Rooji
M
,
Aas
B
,
Helmich
M
,
Schiepek
G
, et al.
Critical fluctuations as an early-warning signal for sudden gains and losses in patients receiving psychotherapy for mood disorders.
Clin Psych Sci.
2020
8(1):25-35.
124.
Jiang
L
,
Qiao
K
,
Sui
D
,
Zhang
Z
,
Dong
H
. Functional criticality in the human brain: Physiological, behavioural and neurodevelopmental correlates. PLoS ONE.
2019
14(3): e:0213690.
125.
Jiang
L
,
Sui
D
,
Qiao
K
,
Dong
HM
,
Chen
L
,
Han
Y
.
Impaired functional criticality of human brain during Alzheimer’s disease progression
.
Sci Rep
.
2018
Jan
;
8
(
1
):
1324
.
[PubMed]
2045-2322
126.
Beggs
J
,
Timme
N
.
Being critical of criticality in the brain
.
Front Phsyiol
;
2012
.
127.
Dahmen
D
,
Grün
S
,
Diesmann
M
,
Helias
M
.
Second type of criticality in the brain uncovers rich multiple-neuron dynamics
.
Proc Natl Acad Sci USA
.
2019
Jun
;
116
(
26
):
13051
60
.
[PubMed]
0027-8424
128.
Priesemann
V
.
Self organization to sub-criticality
.
BMC Neurosci
.
2015
;
1
(
S1
supp 1
):
O19
. 1471-2202
129.
Sulis
W
. Completing Quantum Mechanics. In:
Sienicki
K
, editor
.
Quantum mechanics interpretations
.
Open Academic Press
;
2017
. pp.
350
421
.
130.
Sulis
W
. A process algebra approach to quantum electrodynamics: physics from the top up. In:
Martinez
R
, editor
.
Complex systems: theory and applications
.
New York
:
Nova Publishing
;
2017
. pp.
1
42
.
131.
Sulis
W
.
A process algebra approach to quantum electrodynamics
.
Int J Theor Phys
.
2017
;
56
(
12
):
3869
79
. 0020-7748
132.
Whitehead
AN
.
Process and reality
.
New York
:
The Free Press
;
1978
.
133.
Trofimova
I
. Sociability, diversity and compatibility in developing system: EVS approach. In:
Nation
J
,
Trofimova
I
,
Rand
J
,
Sulis
W
, editors
.
Formal Descriptions of Developing Systems
.
Dordrecht
:
Kluwer
;
2002
. pp.
231
48
.
134.
Sulis
W
. Archetypal dynamical systems and semantic Frames in vertical and horizontal emergence. In Cilliers P, editor. Thinking complexity. complexity and philosophy Vol. 1, ISCE Publishing;
2007
. 135 Kandel E, Schwartz J, Jessell T. Principles of Neuroscience, 4th edition. New York: McGraw-Hill, 2000.
135.
Kandel E, Schwartz J, Jessell T. Principles of Neuroscience, 4th edition. New York: McGraw-Hill, 2000.
136.
Robbins
TW
.
Opinion on monoaminergic contributions to traits and temperament.
Phil Trans Royal Soc B.
2018
doi:/.
137.
Lutgens
F
,
Tarbuck
E
.
The atmosphere: An introduction to meteorology
.
New York
:
Pearson
;
2011
.
138.
Krzyszczak
J
,
Baranowski
P
,
Zubik
M
,
Kazandijev
V
,
Georgieva
V
,
Slawinski
C
, et al.
Multifractal characterization and comparison of meteorological timeseries from two climatic zones
.
Theor Appl Climatol
.
2019
;
137
(
3-4
):
1811
24
. 0177-798X
139.
Duchon
CE
,
Hale
R
.
Time series analysis in meteorology and climatology: an introduction
.
New York
:
Wiley
;
2012
.
140.
Kargapolova
N
.
Stochastic simulation of non-stationary meteorological time-series: daily precipitation indicators, maximum and minmum air temperature simulation using latent and transformed Gaussian processes.
In
Proceedings of the 7th International Conference on Simulation and Modeleing Methodologies, Technologies and Applications
.
Vol 1
: SIMULTECH
2017
pp
173
-
179
.
141.
Horenko
I.
On clustering of non-stationary meteorological time series.
Dynam Atmospheres Oceans.
2010
49:164-187.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.