Electroencephalography (EEG) is an established measure in the field of brain resting state with a range of quantitative methods (qEEG) that yield unique information about neuronal activation and synchronization. Meanwhile, in the last decade, functional magnetic resonance imaging (fMRI) studies have revealed the existence of more than a dozen resting state networks (RSNs), and combined qEEG and fMRI have allowed us to gain understanding about the relationship of qEEG and fMRI-RSNs. However, the overall picture is less clear because there is no a priori hypothesis about which EEG features correspond well to fMRI-RSNs. We reviewed the associations of several types of qEEG features to four RSNs considered as neurocognitive systems central for higher brain processes: the default mode network, dorsal and ventral frontoparietal networks, and the salience network. We could identify 12 papers correlating qEEG and RSNs in adult human subjects and employing a simultaneous design under a no-task resting state condition. A systematic overview investigates which qEEG features replicably relate to the chosen RSNs. This review article leads to the conclusion that spatially delimited θ and whole/local α may be the most promising measures, but the time domain methods add important additional information.

1.
Berger H: Über das Elektrenkephalogramm des Menschen. Eur Arch Psychiatry Clin Neurosci 1929;87:527-570.
2.
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL: A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676-682.
3.
Fox MD, Raichle ME: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007;8:700-711.
4.
Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005;102:9673.
5.
Corbetta M, Shulman GL: Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 2002;3:201-215.
6.
Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD: Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007;27:2349-2356.
7.
Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF: Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 2006;103:13848-13853.
8.
Beckmann CF, DeLuca M, Devlin JT, Smith SM: Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 2005;360:1001-1013.
9.
Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW: Network modelling methods for fMRI. NeuroImage 2011;54:875-891.
10.
Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL: Monitoring the patient's EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol 1993;87:417-420.
11.
Lemieux L, Allen PJ, Franconi F, Symms MR, Fish DR: Recording of EEG during fMRI experiments: patient safety. Magn Reson Med 1997;38:943-952.
12.
Krakow K, Allen PJ, Symms MR, Lemieux L, Josephs O, Fish DR: EEG recording during fMRI experiments: image quality. Hum Brain Mapp 2000;10:10-15.
13.
Goldman RI, Stern JM, Engel J Jr, Cohen MS: Simultaneous EEG and fMRI of the α rhythm. Neuroreport 2002;13:2487-2492.
14.
Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A: Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci U S A 2003;100:11053-11058.
15.
Shibasaki H: Human brain mapping: hemodynamic response and electrophysiology. Clin Neurophysiol 2008;119:731-743.
16.
Laufs H: A personalized history of EEG-fMRI integration. NeuroImage 2012;62:1056-1067.
17.
Pievani M, de Haan W, Wu T, Seeley WW, Frisoni GB: Functional network disruption in the degenerative dementias. Lancet Neurol 2011;10:829-843.
18.
Negishi M, Martuzzi R, Novotny EJ, Spencer DD, Constable RT: Functional MRI connectivity as a predictor of the surgical outcome of epilepsy. Epilepsia 2011;52:1733-1740.
19.
Moeller F, LeVan P, Gotman J: Independent component analysis (ICA) of generalized spike wave discharges in fMRI: comparison with general linear model-based EEG-fMRI. Hum Brain Mapp 2011;32:209-217.
20.
Laufs H, Lengler U, Hamandi K, Kleinschmidt A, Krakow K: Linking generalized spike-and-wave discharges and resting state brain activity by using EEG/fMRI in a patient with absence seizures. Epilepsia 2006;47:444-448.
21.
Kobayashi E, Bagshaw AP, Grova C, Dubeau F, Gotman J: Negative BOLD responses to epileptic spikes. Hum Brain Mapp 2006;27:488-497.
22.
Ullsperger M, Debener S: Simultaneous EEG and fMRI: Recording, Analysis and Application. Oxford, Oxford University Press, 2010.
23.
Kubicki S, Herrmann WM, Fichte K, Freund G: Reflections on the topics: EEG frequency bands and regulation of vigilance. Pharmakopsychiatr Neuropsychopharmakol 1979;12:237-245.
24.
Hughes JR, John ER: Conventional and quantitative electroencephalography in psychiatry. J Neuropsychiatry Clin Neurosci 1999;11:190-208.
25.
Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K: EEG-correlated fMRI of human alpha activity. NeuroImage 2003;19:1463-1476.
26.
Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M: Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A 2007;104:13170.
27.
Rihs TA, Michel CM, Thut G: Mechanisms of selective inhibition in visual spatial attention are indexed by alpha-band EEG synchronization. Eur J Neurosci 2007;25:603-610.
28.
Laufs H, Holt JL, Elfont R, Krams M, Paul JS, Krakow K, Kleinschmidt A: Where the BOLD signal goes when alpha EEG leaves. NeuroImage 2006;31:1408-1418.
29.
Mo J, Liu Y, Huang H, Ding M: Coupling between visual alpha oscillations and default mode activity. NeuroImage 2013;68:112-118.
30.
Scheeringa R, Bastiaansen MC, Petersson KM, Oostenveld R, Norris DG, Hagoort P: Frontal theta EEG activity correlates negatively with the default mode network in resting state. Int J Psychophysiol 2008;67:242-251.
31.
Koenig T, Melie-Garcia L, Stein M, Strik W, Lehmann C: Establishing correlations of scalp field maps with other experimental variables using covariance analysis and resampling methods. Clin Neurophysiol 2008;119:1262-1270.
32.
Jann K, Kottlow M, Dierks T, Boesch C, Koenig T: Topographic electrophysiological signatures of fMRI resting state networks. PLoS One 2010;5:e12945.
33.
Koenig T, Kottlow M, Stein M, Melie-Garcia L: Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics. Comput Intell Neurosci 2011;2011:938925.
34.
Razavi N, Jann K, Koenig T, Kottlow M, Hauf M, Strik W, Dierks T: Shifted coupling of EEG driving frequencies and fMRI resting state networks in schizophrenia spectrum disorders. PLoS One 2013;8:e76604.
35.
Koenig T, Marti-Lopez F, Valdes-Sosa P: Topographic time-frequency decomposition of the EEG. NeuroImage 2001;14:383-390.
36.
Jann K, Dierks T, Boesch C, Kottlow M, Strik W, Koenig T: BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. NeuroImage 2009;45:903-916.
37.
Kottlow M, Jann K, Dierks T, Koenig T: Increased phase synchronization during continuous face integration measured simultaneously with EEG and fMRI. Clin Neurophysiol 2012;123:1536-1548.
38.
Lehmann D, Faber PL, Galderisi S, Herrmann WM, Kinoshita T, Koukkou M, Mucci A, Pascual-Marqui RD, Saito N, Wackermann J, Winterer G, Koenig T: EEG microstate duration and syntax in acute, medication-naive, first-episode schizophrenia: a multi-center study. Psychiatry Res 2005;138:141-156.
39.
Lehmann D, Ozaki H, Pal I: EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol 1987;67:271-288.
40.
Lehmann D: Brain electric microstates and cognition: the atoms of thought; in John ER, Harmony T (eds): Machinery of the Mind. Boston, Birkhäuser, 1990, pp 209-224.
41.
Grieder M, Crinelli RM, Koenig T, Wahlund LO, Dierks T, Wirth M: Electrophysiological and behavioral correlates of stable automatic semantic retrieval in aging. Neuropsychologia 2012;50:160-171.
42.
Lehmann D, Pascual-Marqui RD, Strik WK, Koenig T: Core networks for visual-concrete and abstract thought content: a brain electric microstate analysis. NeuroImage 2010;49:1073-1079.
43.
Koenig T, Studer D, Hubl D, Melie L, Strik W: Brain connectivity at different time-scales measured with EEG. Philos Trans R Soc Lond B Biol Sci 2005;360:1015-1023.
44.
Pascual-Marqui RD, Michel CM, Lehmann D: Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 1995;42:658-665.
45.
Murray MM, Brunet D, Michel CM: Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 2008;20:249-264.
46.
Koenig T, Prichep L, Lehmann D, Sosa P, Braeker E, Kleinlogel H, Isenhart R, John E: Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. NeuroImage 2002;16:41-48.
47.
Koenig T, Lehmann D, Merlo MC, Kochi K, Hell D, Koukkou M: A deviant EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest. Eur Arch Psychiatry Clin Neurosci 1999;249:205-211.
48.
Irisawa S, Isotani T, Yagyu T, Morita S, Nishida K, Yamada K, Yoshimura M, Okugawa G, Nobuhara K, Kinoshita T: Increased omega complexity and decreased microstate duration in nonmedicated schizophrenic patients. Neuropsychobiology 2006;54:134-139.
49.
Kikuchi M, Koenig T, Wada Y, Higashima M, Koshino Y, Strik W, Dierks T: Native EEG and treatment effects in neuroleptic-naive schizophrenic patients: time and frequency domain approaches. Schizophr Res 2007;97:163-172.
50.
Kindler J, Hubl D, Strik WK, Dierks T, Koenig T: Resting-state EEG in schizophrenia: auditory verbal hallucinations are related to shortening of specific microstates. Clin Neurophysiol 2011;122:1179-1182.
51.
Nishida K, Morishima Y, Yoshimura M, Isotani T, Irisawa S, Jann K, Dierks T, Strik W, Kinoshita T, Koenig T: EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer's disease. Clin Neurophysiol 2013;124:1106-1114.
52.
Kikuchi M, Koenig T, Munesue T, Hanaoka A, Strik W, Dierks T, Koshino Y, Minabe Y: EEG microstate analysis in drug-naive patients with panic disorder. PLoS One 2011;6:e22912.
53.
Britz J, Van De Ville D, Michel CM: BOLD correlates of EEG topography reveal rapid resting-state network dynamics. NeuroImage 2010;52:1162-1170.
54.
Yuan H, Zotev V, Phillips R, Drevets WC, Bodurka J: Spatiotemporal dynamics of the brain at rest - exploring EEG microstates as electrophysiological signatures of BOLD resting state networks. NeuroImage 2012;60:2062-2072.
55.
Joel SE, Caffo BS, van Zijl PC, Pekar JJ: On the relationship between seed-based and ICA-based measures of functional connectivity. Magn Reson Med 2011;66:644-657.
56.
Cole DM, Smith SM, Beckmann CF: Advances and pitfalls in the analysis and interpretation of resting-state fMRI data. Front Syst Neurosci 2010;4:8.
57.
Buckner RL, Andrews-Hanna JR, Schacter DL: The brain's default network: anatomy, function, and relevance to disease. Ann NY Acad Sci 2008;1124:1-38.
58.
Garrity A, Pearlson G, McKiernan K, Lloyd D, Kiehl K, Calhoun V: Aberrant ‘default mode' functional connectivity in schizophrenia. Am J Psychiatry 2007;164:450-457.
59.
Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ: Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 2009;33:279-296.
60.
Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris JC: Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 2005;25:7709-7717.
61.
Greicius MD, Srivastava G, Reiss AL, Menon V: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004;101:4637-4642.
62.
Sorg C, Riedl V, Muhlau M, Calhoun VD, Eichele T, Laer L, Drzezga A, Forstl H, Kurz A, Zimmer C, Wohlschlager AM: Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proc Natl Acad Sci U S A 2007;104:18760-18765.
63.
D'Esposito M, Aguirre GK, Zarahn E, Ballard D, Shin RK, Lease J: Functional MRI studies of spatial and nonspatial working memory. Brain Res Cogn Brain Res 1998;7:1-13.
64.
Corbetta M, Shulman GL: Spatial neglect and attention networks. Annu Rev Neurosci 2011;34:569-599.
65.
Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A 2006;103:10046-10051.
66.
Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK: Noise during rest enables the exploration of the brain's dynamic repertoire. PLoS Comput Biol 2008;4:e1000196.
67.
Henseler I, Falkai P, Gruber O: Disturbed functional connectivity within brain networks subserving domain-specific subcomponents of working memory in schizophrenia: relation to performance and clinical symptoms. J Psychiatr Res 2010;44:364-372.
68.
Woodward ND, Rogers B, Heckers S: Functional resting-state networks are differentially affected in schizophrenia. Schizophr Res 2011;130:86-93.
69.
Foucher JR, Luck D, Marrer C, Pham B-T, Gounot D, Vidailhet P, Otzenberger H: fMRI working memory hypo-activations in schizophrenia come with a coupling deficit between arousal and cognition. Psychiatry Res 2011;194:21-29.
70.
Horn H, Jann K, Federspiel A, Walther S, Wiest R, Muller T, Strik W: Semantic network disconnection in formal thought disorder. Neuropsychobiology 2012;66:14-23.
71.
Menon V: Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 2011;15:483-506.
72.
Menon V, Uddin LQ: Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 2010;214:655-667.
73.
Palaniyappan L, Mallikarjun P, Joseph V, White TP, Liddle PF: Reality distortion is related to the structure of the salience network in schizophrenia. Psychol Med 2011;41:1701-1708.
74.
Chang C, Liu Z, Chen MC, Liu X, Duyn JH: EEG correlates of time-varying BOLD functional connectivity. NeuroImage 2013;72:227-236.
75.
Carhart-Harris R, Friston K: The default-mode, ego-functions and free-energy: a neurobiological account of Freudian ideas. Brain 2010;133:1265.
76.
Lopes da Silva F: EEG and MEG: relevance to neuroscience. Neuron 2013;80:1112-1128.
77.
Hlinka J, Alexakis C, Diukova A, Liddle PF, Auer DP: Slow EEG pattern predicts reduced intrinsic functional connectivity in the default mode network: an inter-subject analysis. NeuroImage 2010;53:239-246.
78.
Jann K, Federspiel A, Giezendanner S, Andreotti J, Kottlow M, Dierks T, Koenig T: Linking brain connectivity across different time scales with electroencephalogram, functional magnetic resonance imaging, and diffusion tensor imaging. Brain Connect 2012;2:11-20.
79.
Gonçalves SI, de Munck JC, Pouwels PJ, Schoonhoven R, Kuijer JP, Maurits NM, Hoogduin JM, Van Someren EJ, Heethaar RM, Lopes da Silva FH: Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: inter-subject variability. NeuroImage 2006;30:203-213.
80.
Ishihara T, Yoshi N: Multivariate analytic study of EEG and mental activity in juvenile delinquents. Electroencephalogr Clin Neurophysiol 1972;33:71-80.
81.
Klimesch W: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 1999;29:169-195.
82.
Mitchell DJ, McNaughton N, Flanagan D, Kirk IJ: Frontal-midline theta from the perspective of hippocampal ‘theta'. Prog Neurobiol 2008;86:156-185.
83.
Olbrich S, Mulert C, Karch S, Trenner M, Leicht G, Pogarell O, Hegerl U: EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement. NeuroImage 2009;45:319-332.
84.
Musso F, Brinkmeyer J, Mobascher A, Warbrick T, Winterer G: Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis approach to explore resting-state networks. NeuroImage 2010;52:1149-1161.
85.
Van de Ville D, Britz J, Michel CM: EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci U S A 2010;107:18179-18184.
86.
Ciuciu P, Varoquaux G, Abry P, Sadaghiani S, Kleinschmidt A: Scale-free and multifractal time dynamics of fMRI signals during rest and task. Front Physiol 2012;3:186.
87.
Leuchter AF, Cook IA, Marangell LB, Gilmer WS, Burgoyne KS, Howland RH, Trivedi MH, Zisook S, Jain R, McCracken JT, Fava M, Iosifescu D, Greenwald S: Comparative effectiveness of biomarkers and clinical indicators for predicting outcomes of SSRI treatment in major depressive disorder: results of the BRITE-MD study. Psychiatry Res 2009;169:124-131.
88.
Tenke CE, Kayser J, Manna CG, Fekri S, Kroppmann CJ, Schaller JD, Alschuler DM, Stewart JW, McGrath PJ, Bruder GE: Current source density measures of electroencephalographic alpha predict antidepressant treatment response. Biol Psychiatry 2011;70:388-394.
89.
Pizzagalli DA, Oakes TR, Davidson RJ: Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: an EEG/PET study of normal and depressed subjects. Psychophysiology 2003;40:939-949.
90.
Koenig T, Lehmann D, Saito N, Kuginuki T, Kinoshita T, Koukkou M: Decreased functional connectivity of EEG theta-frequency activity in first-episode, neuroleptic-naıve patients with schizophrenia: preliminary results. Schizophr Res 2001;50:55-60.
91.
Sponheim SR, Clementz BA, Iacono WG, Beiser M: Clinical and biological concomitants of resting state EEG power abnormalities in schizophrenia. Biol Psychiatry 2000;48:1088-1097.
92.
Mientus S, Gallinat J, Wuebben Y, Pascual-Marqui RD, Mulert C, Frick K, Dorn H, Herrmann WM, Winterer G: Cortical hypoactivation during resting EEG in schizophrenics but not in depressives and schizotypal subjects as revealed by low resolution electromagnetic tomography (LORETA). Psychiatry Res 2002;116:95-111.
93.
Meyer MC, van Oort ESB, Barth M: Electrophysiological correlation patterns of resting state networks in single subjects: a combined EEG-fMRI study. Brain Topogr 2013;26:98-109.
94.
Logothetis NK: What we can do and what we cannot do with fMRI. Nature 2008;453:869-878.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.