Psychostimulant-mediated synaptic plasticity in the hippocampus and nucleus accumbens is one of the pathological features of addiction, a disease of learning and memory. Dynamic palmitoylation of PSD-95 modulates synaptic plasticity, but its role in addiction is not fully understood. Using a morphine-conditioned place preference (CPP) rat model and Acyl-biotin exchange (ABE) labeling we found a correlation between CPP and levels of palmitoylated PSD-95 in the hippocampus and nucleus accumbens. Rats that developed significant CPP had higher levels of palmitoylation of PSD-95 in the hippocampus and nucleus accumbens. Furthermore, palmitoylation of PSD-95 was significantly decreased in the hippocampus but increased in the nucleus accumbens during the beginning of withdrawal. With long-term withdrawal, palmitoylated PSD-95 in these regions recovered, while CPP waned and physical signs gradually disappeared. However, morphine reinjection restored strong CPP without producing any significant changes in palmitoylation of PSD-95. Our findings suggest that CPP is correlated with the dynamics of PSD-95 palmitoylation in rat hippocampus and nucleus accumbens, and could be one of the mechanisms for morphine-dependent synaptic plasticity.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.