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Abstract 
Background: Over the last century, animal models have been employed to study the gut-brain axis and its relationship 
with physiological processes, including those necessary for survival, such as food intake regulation and 
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thermoregulation; those involved in diseases, ranging from inflammation to obesity; and those concerning the 
development of neurodegenerative diseases and neuropsychiatric disorders, such as Alzheimer’s disease and autism 
spectrum disorder, respectively. Summary: The gut microbiota has been recognized in the last decade as an essential 
functional component of this axis. Many reports demonstrate that the gut microbiota influences the development of a 
vast array of physiological processes. Experiments that use animal models to assess the effect of the gut microbiota 
on the brain and behavior may involve the acute or chronic administration of broad-spectrum antibiotics. Key 
Messages: This narrative review summarizes the beneficial or detrimental effects of antibiotics administered 
prenatally or postnatally to rodents during acute or chronic periods in a wide range of protocols. These include animal 
models of disease and behavioral paradigms of learning and memory, anxiety, obsessive-compulsive disorder, and 
autism spectrum disorder. Biomarkers and behavioral assays associated with antibiotic exposure are also included in 
this review. 
 
1. Introduction 
Penicillin has been described as the first modern broad-spectrum antibiotic. However, before penicillin, a red dye 
showed activity against diverse Streptococcus strains. At the time, chemists knew that dye molecules and aniline dyes 
had the potential to bind to bacteria with varying degrees of specificity [1]. By the late 19th century, Paul Ehrlich 
published a paper speculating that if dye molecules could selectively bind to microorganisms, they could also 
selectively kill bacteria [2]. This red dye was sulfamidochrysoidine, and it was sold to the public for therapeutic use 
under the brand name Protonsil in the 1930s. Its mechanism of action as an antibiotic is based on the compound 
sulfanilamide, which prevents folic acid synthesis and is the metabolized product of sulfamidochrysoidine in the 
human body [3]. Although folic acid is an essential nutrient in the human diet, humans do not produce it and thus are 
not affected by sulfanilamide; consequently, sulfanilamide is potentially therapeutic for humans. The formulation of 
the pharmaceutical company that sold it in the United States as Elixir Sulfanilamide included diethylene glycol, which 
is poisonous to humans, and its use killed 100 people [2]. Though Protonsil, sulfanilamide without diethylene glycol, 
saved the life of Franklin Delano Roosevelt Jr., son of the United States President at the time, who was affected by a 
septic streptococcal throat infection [4], according to Zaffiri et al. [5]. 
Although this story is not directly related to the effect of an antibiotic per se, it points to the potentially harmful effect 
of antibiotic use in humans. Antibiotics have been widely employed and have saved millions of lives for almost a 
century; however, in the last few decades researchers have begun to understand how they kill both pathogenic and 
commensal microbes, and how their use as a first-line treatment for infections has modified the microbial ecology of 
humans [6]. As an example of their current extended use, antibiotics are even being used to assess their effects on 
depression, social anxiety, and obsessive-compulsive disorder (OCD) in teenagers with acne [7]. Consequently, 
pathogens (i.e., detrimental bacteria) have developed resistance to antibiotics, including methicillin-resistant 
Staphylococcus aureus [8], vancomycin-resistant enterococci [9], and drug-resistant tuberculosis [10], to the extent 
that one approval of antibiotics in healthcare occurs for every two withdrawals [11]. Likewise, it has been suggested 
that without policies to stop the alarming spread of antimicrobial resistance, which is associated with the 
indiscriminate use of antibiotics, the 70,000 deaths per year caused by this practice could escalate to 10 million 
deaths by 2050 [12]. Besides their side effects, including toxicity [13], antibiotics have also been associated with 
encephalopathy, aphasia, seizures, and coma [14].  
Despite these negative data, antibiotics have not only helped to treat infections for nearly 80 years but also revealed 
the importance of microbiota. Although the effects of antibiotics have been linked to gut, oral, respiratory, skin, and 
vaginal microbiota [15], in this review we focus only on gut microbiota. 
In recent years, researchers using diverse experimental approaches, such as high-throughput DNA sequencing and 
advanced computational tools, have described how a healthy gut microbiota influences physiological functions. These 
functions include essential processes for sustaining life (i.e., food intake [16, 17]) and thermoregulation [18]). 
Researchers have also found how changes in microbial ecology, associated with the indiscriminate use of broad-
spectrum antibiotics, affect the immune system [19] and influence the incidence of obesity [20], neurological diseases 
such as Alzheimer’s disease (AD) [21], and neuropsychiatric disorders like autism spectrum disorder (ASD) [22, 23]. 
Growing evidence suggests that even short-term antibiotic treatment shifts healthy microbiota to long-term 
alternative dysbiotic states [25], that is, compositional and functional alterations of gut microbiota diversity. In this 
review, we summarized the association between the use of antibiotics and their beneficial or detrimental 
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consequences for short and long-term periods of administration in animal models of disease. Behavioral paradigms of 
learning and memory [26, 27, 28], anxiety [29], depression [30], OCD [31], and ASD [32], along with biomarkers 
associated with these paradigms due to antibiotic exposure, are also covered. 
 
1.1. Antibiotics as a tool for the study of health and disease 
Several authors have described the impact of gut microbiota on the brain and behavior [33]. In this context, it has also 
been suggested that gut microbiota influences host physiology and disease. Thus, the prevalence of pathogenic 
bacteria over beneficial bacteria, termed “gut dysbiosis”, has been linked to disease [34]. In the search for this 
relationship, scientists have utilized antibiotics as a tool to modify or deplete gut microbiota in animal models to 
assess their influence on inflammatory bowel diseases [35, 36], obesity [37], arterial dysfunction [38], multiple 
sclerosis [39] and mood disorders [40, 41]. Germ-free (GF) animals, mice raised without any exposure to 
microorganisms, are another approach to studying the role of microbiota in the brain and behavior. Although these 
animals provide the opportunity to introduce complete microbiota or defined consortia at various developmental 
stages [42], GF research has revealed that the microbiota is necessary for normal development and the maturation of 
immune, metabolic, digestive, gastrointestinal tract, and nervous system functions [43]. Also, GF breeding may induce 
permanent neurodevelopmental deficits that can make the model unsuitable for investigating specific neurological or 
neuropsychiatric diseases that require normal early-life microbiota [42]. Antibiotic treatment is an alternative to GF 
conditions for modeling microbiota-deficient animals at different developmental stages across the lifespan. In this 
review, we included detailed information based on the scientific literature that reports the use of two widely 
documented treatments involving a cocktail of broad-spectrum antibiotics. Animals were given these antibiotics, 
mixed in tap water, through ad libitum oral administration.  
 
1.2. Antibiotics  
1.2.1. Cocktails of antibiotics 
We collected information about the widespread use of antibiotics to manipulate microbiota, in microbiota-gut-brain-
axis studies in animal models. Between November 2021 and July 2023, we conducted searches on PubMed for 
research papers reporting the use of antibiotics in animal models of disease and changes in gut microbiota, with the 
terms “antibiotics”, “animal models of disease” and “gut microbiota.” Also, as inclusion criterion the papers had to be 
available to download via the Metropolitan Autonomous University (UAM) digital library (BIDI). The initial search 
yielded 1,091 results of papers published between 1986 and 2023, including “books and documents”, “clinical trial”, 
“meta-analysis”, “randomized controlled trial”, “review” and “systematic review”. To delimit our search, based on key 
papers from our research group, we focused on documents published after 2006 that cited basic research studies 
using antibiotic cocktails in animal models of disease. With these criteria, we found a couple of cocktails frequently 
cited in the literature: one published by Rakoff-Nahoum et al. (2004), which we will refer to as the “Rakoff-Nahoum 
antibiotic cocktail”, and another one published by Reikvam et al. (2011), which we will refer to as the “Reikvam 
antibiotic cocktail”. 
The Rakoff-Nahoum antibiotic cocktail comprises ampicillin, neomycin sulfate, metronidazole, and vancomycin [44; 
cited by 3,417 papers in Scopus on November 30th, 2023], and it induces a substantial depletion of commensal 
microbes and modulates diverse parameters of obesity, cardiovascular disease, colitis, and multiple sclerosis. This 
antibiotic treatment reduced the expression of antimicrobial factors to a level similar to that of GF mice and reduced 
the fecal bacterial DNA load 400-fold while ensuring the health of 6-to-10-week-old BALB/c mice when administered 
for 17 days [45]. A summary of original research papers using this cocktail of antibiotics [46, 38, 47, 40, 48, 49, 37, 50] 
is shown in Table 1. 
The Reikvam antibiotic cocktail consists of ampicillin, metronidazole, vancomycin, ciprofloxacin, and imipenem [45; 
cited by 265 papers in Scopus on November 30th, 2023], and it has been utilized to assess neurobehavioral changes, 
including anhedonia and anxiety-like behaviors, associated with fecal microbiota transplantation from depressed 
patients into microbiota-depleted rats after 28 days of antibiotic treatment [41]. A summary of original research 
papers using this cocktail of antibiotics [29, 51, 30] is presented in Table 2. 
Though we mainly focused on these cocktails of antibiotics to document their impact on gut microbiota and the 
beneficial or detrimental effects they exert on diverse animal models of disease, it is important to mention that the 
studies we included in this review vary in several factors: a) period of administration (i.e., from 17 days to 6 months), 
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b) duration of treatment (e.g., 2 weeks vs 7 weeks), c) species (i. e., rat or mouse), d) age and sex of the animal 
studied, and e) animal model (i. e., a disease-specific model or a healthy, conventional model). Within these 
considerations, we also included other antibiotic treatments commonly used in animal research. A summary of 
original research papers utilizing these antibiotic cocktails [52, 53, 54, 55, 56, 57, 58, 50] is shown in Table 3. 
 
2. Gut microbiota 
The normal human gut microbiota is composed of 29 phyla, with Bacteroidetes and Firmicutes [59] dominating the 
gut of healthy adult humans [60]. In rodents, diverse studies have accounted for the relationship between the 
manipulation of these bacterial phyla and the parameters of specific diseases. In this way, we describe the changes in 
microbiota following the administration of the Rakoff-Nahoum and Reikvam antibiotic cocktails. 
 
2.1. Changes in gut microbiota  
Rakoff-Nahoum antibiotic cocktail. This cocktail has been employed in animal models of obesity-related vascular 
dysfunction [46], stress-mediated vascular dysfunction [38], non-alcoholic fatty liver disease [49], and multiple 
sclerosis [47]. According to some research papers, it induces an incomplete depletion of cultivable bacteria [35, 61]. 
Sequencing obtained from fresh fecal samples has demonstrated that its administration depletes all detectable 
commensal bacteria [38], abrogates gut microbiota [46], reduces the relative abundance of Bacteroidetes and 
Firmicutes [62, 37, 50], and increases the abundance of Proteobacteria and Cyanobacteria [40].  
Reikvam antibiotic cocktail. Sequencing from fecal and cecal samples after administering this cocktail to 10-week-old 
male Sprague Dawley rats for 4 to 6 weeks revealed a significant decrease in the relative abundance of Bacteroidetes 
and Firmicutes, and an increase in Proteobacteria and Cyanobacteria [30]. According to one paper, the administration 
of this cocktail to C57/BL6 mice for 6 to 8 weeks prevented the development of ileitis following oral infection by the 
intracellular cosmopolitan protozoan Toxoplasma gondii [36], which is associated with the accumulation of the gram-
negative bacteria Escherichia coli and Bacteroides/Prevotella spp. in inflamed ileum [63]. This antibiotic cocktail has 
also been used in a mouse model of colonization resistance against Campylobacter jejuni infection [55], as well as in 
models of subclinical intestinal inflammation [65, 66]. It has also been used to assess the role of gut microbiota in 
major depressive disorder [67, 68, 41].  
 
3. Mechanisms of action of the antibiotics 
Ampicillin is a member of the ß-lactam family of antibiotics. It attaches to specific penicillin-binding proteins located 
within the bacterial cell wall, thus interfering with bacterial cell wall synthesis [69, 70, 71]. Ciprofloxacin is a second-
generation fluoroquinolone [72]. It acts on bacterial topoisomerase II, a DNA gyrase, and topoisomerase IV [73]. It 
also targets the alpha subunits of DNA gyrase and impedes it from supercoiling bacterial DNA, thus preventing DNA 
replication [74]. The antimicrobial action of pencarbapenems like imipenem is mediated by binding to specific 
penicillin-binding proteins that catalyze peptidoglycan formation in the bacterial cell wall. Hence, pencarbapenems 
interrupt bacterial cell wall synthesis [75]. Metronidazole acts as an effective antimicrobial agent for the treatment of 
infections with anaerobic bacteria and protozoa [76]. It inhibits protein synthesis by interacting with host cell DNA, 
destabilizing of helical DNA structure and DNA strand breakage [77]. Neomycin is an aminoglycoside antibiotic agent 
that binds to the 30S ribosomal subunit of susceptible bacteria and disrupts the translational machinery of bacterial 
protein synthesis [78]. The bactericidal action of the glycopeptide antibiotic vancomycin is mediated by the inhibition 
of cell wall biosynthesis, which is associated with the binding of vancomycin to the acyl D-ala-D-ala portion of the 
growing peptidoglycan cell wall [79]. Vancomycin also alters cell membrane permeability and inhibits RNA synthesis 
[80]. Additional information on the mechanisms of action of the antibiotics mentioned above can be reviewed in Eyler 
and Shvets [81]. 
 
4. Effects of Rakoff-Nahoum and Reikvam antibiotic cocktails upon animal models of disease, behavioral paradigms, 
and associated biomarkers 
 
4.1. Beneficial effects 
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We consider an effect to be beneficial when the administration of antibiotics: a) exerts a protective effect against a 
specific disease; b) reduces a detrimental condition in a specific animal model of disease; and c) reverses gut dysbiosis 
induced by a specific experimental approach.  
 
4.1.1. Rakoff-Nahoum antibiotic cocktail: ampicillin, neomycin sulfate, metronidazole, and vancomycin  
When administered to normal-weight Swiss Webster mice for 4 weeks, the Rakoff-Nahoum antibiotic cocktail 
improves glucose tolerance [37]; when administered to C57BL/6J mice for 8 weeks, along with a high-fat diet for the 
same period, it improves insulin tolerance, decreases both tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) 
levels, and reduces toll-like receptor 4 (TLR4) activation [62]. When this antibiotic cocktail is administered for 2 to 5 
months to C57BL/6J mice fed a Western diet (WD), it abrogates the 7-month WD-induced gut dysbiosis, by increasing 
Firmicutes and decreasing Bacteroidetes, and it reverses WD-induced arterial stiffness and endothelial dysfunction 
[46]. In a model of stress-mediated arterial dysfunction, the administration of this cocktail for 4 weeks to 20-24 
months old C57BL/6N mice reverses endothelial dysfunction and arterial stiffening, and it suppresses plasma levels of 
the adverse gut-derived metabolite trimethylamine N-oxide [38], which is an age-related sign of cardiovascular 
disease [82]. 
In an experimental autoimmune encephalomyelitis (EAE) multiple sclerosis animal model, female SJL/J or C57BL/6 
mice were challenged s. c. with proteolipid protein (PLP)139-151 or myelin-oligodendrocyte glycoprotein (MOG)35-
55. Oral administration of the antibiotic cocktail for seven days protected mice against EAE, as it induced a decrease in 
gut commensal bacteria and proinflammatory cytokines, and an increase in IL-10 and IL-13 [39]. 
 
4.1.2. Reikvam antibiotic cocktail: ampicillin, metronidazole, vancomycin, ciprofloxacin, and imipenem  
This cocktail of antibiotics has been used to deplete gut microbiota in mice, to disrupt commensal host-bacterial 
relationships [53] and to explore the signaling pathways of diverse disease processes in rodent models of disease [83, 
84, 85]. Thus far, no beneficial effects have been reported in association with its use. 
 
4.2. Detrimental effects 
We consider an effect to be detrimental when: a) the antibiotic cocktail provokes severe mortality or morbidity; b) the 
administration of antibiotics induces or exacerbates deficits in a specific behavioral paradigm; and c) the 
administration of antibiotics reduces the expression of biomarkers associated with improvement in a specific 
behavioral paradigm.  
  
4.2.1. Rakoff-Nahoum cocktail: ampicillin, neomycin sulfate, metronidazole, and vancomycin 
According to Reikvam et al. [45], the protocol for this cocktail is difficult to reproduce. Researchers who have 
successfully administered the antibiotics ad libitum to mice report a high rate of mortality and morbidity in certain 
strains and genotypes. For instance, a seven-day oral administration of dextran sulfate sodium (DSS), a heparin-like 
polysaccharide involved in the development of colitis with ulceration, induced intestinal and injury inflammation 
resembling that of human ulcerative colitis [86] in MyD88-deficient mice. MyD88 is an adaptor molecule essential for 
TLR-mediated induction of inflammatory cytokines [87]. However, administering this cocktail for 4 weeks led to 
depletion of all detectable commensals and resulted in severe mortality and morbidity in these mice [44].  
 
4.2.2. Reikvam antibiotic cocktail: ampicillin, metronidazole, vancomycin, ciprofloxacin, and imipenem  
This cocktail of antibiotics has been administered for 28 days to assess neurobehavioral changes, including anhedonia 
and anxiety-like behaviors, associated with fecal microbiota transplantation from depressed patients to microbiota-
depleted adult rats [41]. When administered to 10-week-old Sprague-Dawley male rats for 6 weeks, it induces spatial 
memory deficits in the Morris water maze test and increases depressive-like behaviors in the forced swim test by 
decreasing swimming scores and increasing immobility scores [30]. These changes are associated with reduced gene 
expression of the glucocorticoid receptor (Nr3c1) and corticotropin-releasing hormone receptor 1 (Crhr1) in the 
hippocampus and amygdala [30]. Also, when administered to male C57BL mice for 3 weeks, from postnatal days 28 to 
49 (i.e., adolescence), this cocktail of antibiotics depletes microbiota, induces body weight loss, increases anxiety-like 
behaviors in the elevated plus maze, increases freezing behavior in a fear-conditioning paradigm, and increases the 
expression of genes related to immune markers, neurotransmission, and neuroplasticity, such as TLR4, gamma-
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aminobutyric acid type A receptor subunit alpha-2 (Gabra2) and synaptophysin (Syp), respectively, in the amygdala 
[29]. When administered for 7 weeks to female C57BL/6 mice, it reduces neurogenesis, as evaluated by hippocampal 
staining of mature neurons and transient proliferating mitotic neuronal progenitor cells, with antibodies against NeuN 
and doublecortin, respectively. It also induces memory retention impairment in the novel object recognition test [51]. 
 
4.3. Beneficial and detrimental effects 
 
4.3.1. Rakoff-Nahoum antibiotic cocktail: ampicillin, neomycin sulfate, metronidazole, and vancomycin 
An amplicon 16S rRNA gene sequencing analysis conducted in a murine model of chronic secondary-progressive 
multiple sclerosis, which is characterized by the development of a biphasic pattern of the disease that is more closely 
related to the human condition [88], revealed a significant difference between the gut microbiome of EAE-induced 
mice and healthy control mice, as well as a reduction in species in EAE-induced mice. This study evaluated the relative 
abundances of taxonomical groups and taxonomical levels, including phylum, class, order, family, genus, and species. 
A two-week treatment with this antibiotic cocktail, administered orally in drinking water, reduced disease progression 
in animals with mild EAE and exacerbated the disease in animals with severe EAE, according to their clinical scores 
[47]. This treatment has been shown to affect the balance of proinflammatory and regulatory responses with EAE, and 
it is speculated that T regulatory cells are partially responsible for protecting the gut microbiota. A report [39] showed 
that mice who develop severe EAE exhibit a dysbiotic gut microbiome compared to healthy control mice.  
 
4.3.2. Reikvam antibiotic cocktail: ampicillin, metronidazole, vancomycin, ciprofloxacin, and imipenem 
Unlike the Rakoff-Nahoum antibiotic cocktail research, studies employing the Reikvam antibiotic cocktail have not yet 
documented the detrimental and beneficial effects of this cocktail. 
 
5. Conclusions 
Although some studies suggest that successful colonization of the intestinal microbiome involves microbial selection 
and competition beginning in the first hours of life [89], and that this colonization occurs rapidly in mammals during 
and after birth [90, 6, 91], microbial composition continuously changes throughout life [25, 20, 92] due to the 
interaction with and exposure to a vast array of factors, including nutritional status, environmental temperature, 
water resources, lifestyle, diet, and age [93]. The use of antibiotics is also one of these factors.  
At the beginning of the 20th century, antibiotics decreased the number of human deaths caused by infectious 
diseases from almost half of all deaths to nearly 10% of deaths. However, towards the end of the 20th century and the 
beginning of the 21st century, there was a surge in the indiscriminate use of antibiotics, which significantly increased 
microbial resistance to antibiotics in humans [3]. Similarly, abuse of antibiotics also seems to play a major role in the 
pathogenesis of mental disorders associated with gut microbiota dysbiosis. Therefore, antibiotics are now considered 
potentially harmful drugs. Clinical research has revealed that gut dysbiosis is associated with major depressive 
disorder, bipolar disorder [94], ASD [22, 23, 32], Parkinson’s disease [95, 96], and AD [21]. However, these 
relationships can reflect that microbiota impairment is either preceded by or caused by the diseases, or both. To 
elucidate the relationship between gut microbiota and neurodegenerative or neuropsychiatric disorders, basic 
research has explored the impact of antibiotics on the brain and behavior. Researchers utilize antibiotics to make the 
host vulnerable to infection and then studying the molecular pathways associated with a specific disease. GF animals 
are an important model for studying the impact of gut microbes on the development and function of the nervous 
system [42]. However, GF mice exhibit alterations in the blood-brain barrier and brain ultrastructure [54]. In 
comparison to conventional specific pathogen-free animals, GF mice display increased plasma corticosterone levels, 
reduced anxiety-like behavior, decreased N-methyl-D-aspartate receptor subunit NR2B mRNA expression in the 
central amygdala, decreased serotonin receptor 1A mRNA expression in the hippocampus and increased brain-derived 
neurotrophic factor mRNA expression in the hippocampus [97]. These basal differences between GF mice and 
conventional mice make it difficult to interpret the behavioral and neurochemical outcomes associated with antibiotic 
administration. They also underscore the importance of the presence or absence of conventional intestinal microbiota 
in behavioral development and the associated neurochemical changes in the brain [97 98]. In another approach, 
antibiotics are administered to conventional animals for short or long periods, ranging from days to months, to modify 
or deplete gut microbiota and assess the relationship between gut microbiota and disease. In this approach, broad-
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spectrum antibiotics can induce beneficial or detrimental effects, or both, depending on the stage of development of 
the disease, among other factors [47]. Researchers have also used multiple methodologies and antibiotics in their 
protocols, which can be difficult to replicate [45].  At times, broad-spectrum antibiotic cocktails reverse negative 
parameters of disease [46] or exacerbate several deficits in behavioral paradigms that evaluate memory, depression, 
and anxiety [30]. Despite these issues, and even though antibiotics per se could be toxic to the brain [54], the latter 
approach has become popular and has dominated the research field in recent years. The pharmacokinetics of the 
antibiotics (i. e., route of administration, absorption, distribution, metabolism, and clearance), should also be 
considered to determine the relevance of these issues. For instance, as compared to systemic antibiotics, host poorly 
absorbed antibiotics, such as rifaximin [95], may deliver high concentrations of antibiotics to the site of an enteric 
infection with minimal risk of systemic adverse effects, toxicity, and drug interactions, and can be associated with high 
bioavailability in the gastrointestinal tract and low concentrations in the bloodstream and the brain [100]. However, 
some poorly absorbed antibiotics, such as minocycline [101], may cross the blood-brain barrier [102]. The impact of 
this type of antibiotics on the brain could be masked by their pharmacokinetics. In acute bacterial meningitis, a 
disease with rapid onset and epidemiological potential, and high rates of mortality and morbidity [103, 104], bacteria 
evade the mucosa and immune responses, and invade the brain [105]. Therefore, research on the effects of antibiotics 
in animal models and their relationship with the microbiota-gut-brain axis should explore how specific host-pathogen 
interactions cause inflammation and brain damage. Nonetheless, this approach has also accounted for the molecular 
effects of these drugs in the brain and various peripheral tissues, and it has also allowed researchers to gain a deeper 
understanding of the effects of antibiotics on both gut microbiota and behavioral paradigms that evaluate aspects of 
neuropsychiatric disorders and neurodegenerative diseases, such as schizophrenia and AD, respectively.  
Advances in gut-brain axis research and antibiotic-induced gut microbiota impairment are groundbreaking and 
provide the opportunity to prevent or control diseases, design nonpharmaceutical therapeutic strategies for the 
diseases, and have predictive microbiota-based biomarkers for the early stages of diseases. In this way, some clinical 
studies [106] and meta-analyses of clinical trials [107] have shown that single antibiotic treatment regimens, including 
penicillin and quinolones, may increase the risk of depression and anxiety [106]. Additionally, minocycline, when used 
as an adjunctive therapy in combination with anti-inflammatory drugs, has been found to alleviate symptoms of 
depression [107]. In rodents, decreased microbial diversity is associated with depressive-like behaviors [41] and 
alterations in tryptophan metabolism [108]. Because of these advances, we know, for instance, that the 
antidepressant isoniazid has antibacterial activity. As a result, it has been developed to treat tuberculosis [109]. Also, 
we know that minocycline, which enters the brain and interacts with microglia, exerts antidepressant activity [110, 
111]. At another level, we know that antibiotic treatment and duration may alter microbiota compositions [25], and 
that there are critical developmental windows in which antibiotics may exert long-lasting effects [112] upon anxiety, 
depression [29], and cognition [51].  
The antibiotic cocktails analyzed in this review reduce the relative abundance of Bacteroidetes and Firmicutes and 
increase the abundance of Proteobacteria and Cyanobacteria [62, 37, 50, 30]. To our knowledge, no papers have been 
published exploring the details of their toxicity in animal models. However, since antibiotics may act directly in the 
brain, this issue must be considered in research on the gut-microbiota-brain axis. Both antibiotic cocktails have been 
employed in a wide range of animal models and regimens. However, the Rakoff-Nahoum antibiotic cocktail (ampicillin, 
neomycin sulfate, metronidazole, and vancomycin) seems to be associated with high rates of morbidity and mortality, 
in MyD88 deficient mice [44]. Nonetheless, it is also related to both beneficial and detrimental effects [47]. The 
Reikvam antibiotic cocktail (ampicillin, metronidazole, vancomycin, ciprofloxacin, and imipenem) has been associated 
with detrimental effects, including reduced hippocampal neurogenesis and impaired memory [51], and increased 
anxiety-like behaviors and anhedonia [41].  
Still, researchers and clinicians must be cautious because the methodological heterogeneity makes it difficult to 
compare basic studies and translate knowledge from preclinical research to the clinical field. However, the negative 
consequences of the indiscriminate use of antibiotics might encourage researchers to conduct a thorough review of 
the literature, the antibiotic administration protocols to be used, and the animal models of disease to be studied. The 
main conclusions of this review are summarized in Figure 1. 
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Figure 1. Microbiota is an essential component of the gut-brain axis. Clinical evidence has suggested that gut dysbiosis 
is associated with the incidence of neurodegenerative and neuropsychiatric diseases. Acute or chronic administration 
of antibiotics has been employed to deplete or modify gut microbiota in animal models, to study the impact of gut 
microbiota on brain and behavior. In animal models, the Rakoff-Nahoum and Reikvam antibiotic cocktails reduce the 
relative abundance of Firmicutes and Bacteroidetes and increase the abundance of Proteobacteria and Cyanobacteria. 
These cocktails also induce neurobehavioral changes in animal models of disease. Abbreviations: WD, Western Diet 
(consisting of 42.0% fat –61.8% saturated, 27.3% monounsaturated, 4.7% polyunsaturated–, 42.7% carbohydrate –
80% sucrose–, and 15.2% protein calories, for 7 months). 
 

D
ow

nloaded from
 http://karger.com

/nim
/article-pdf/doi/10.1159/000538927/4218520/000538927.pdf by guest on 23 April 2024

https://doi.org/10.1093/femsre/fuy018


 

 

 
 

D
ow

nloaded from
 http://karger.com

/nim
/article-pdf/doi/10.1159/000538927/4218520/000538927.pdf by guest on 23 April 2024



 

 

 

D
ow

nloaded from
 http://karger.com

/nim
/article-pdf/doi/10.1159/000538927/4218520/000538927.pdf by guest on 23 April 2024



 

 

Table 1. Summary of antibiotics employed in diverse animal models of disease: antibiotic cocktail 

one: ampicillin, neomycin sulfate, metronidazole, and vancomycin (first published in Rakoff-

Nahoum et al., 2004). 

Reference 
Animal 

model/species/sex/age 

Duration of antibiotic 

treatment 
Main effects 

Battson et al., 2017 

[46]. 

Male C57BL/J6 mice 

(7-9 mo) 
2 mo 

Reversed Western diet-
induced vascular 

dysfunction. 

Brunt et al., 2019 [38]. 

Young (8-10 wk) and 

old (20-24 mo) male 

C57BL/6N mice 

3-4 wk 

Reversed endothelial 

dysfunction and arterial 

stiffening. Suppression 

of T-MAO, an adverse 

gut-derived metabolite 

associated with ageing. 

Colpitts et al., 2017 

[47]. 

Model of SP-MS, 
female NOD mice  

(10 wk) 

2 wk 

Reduced mortality and 

clinical disease 

severity; prevention or 
exacerbation of 

experimental 

autoimmune 

encephalomyelitis 

clinical scores. 

Desbonnet et al., 2015 

[40]. 

Swiss male mice  

(PND 21 onwards) 
2 mo 

Object recognition 

memory impairment 

and increased anxiety. 

Reduced BDNF 

hippocampal 

expression. Increased 

tryptophan and reduced 
kynurenine serum 

levels. 

Flannigan et al., 2018 

[48]. 

 SPF male C57BL/6 

and BALB/c mice  

(7-10 wk) 

2 wk 

Prevented and reversed 

MMF- induced weight 

loss and colonic 

inflammation. 

Janssen et al., 2017 

[49]. 

Non-alcoholic fatty 
liver disease mouse 

model,  

male C57Bl/6 mice  

(10 wk) 

22 wk 

Suppressed colon 

bacteria, i.e., reduced 

expression of short-

chain fatty acids in the 

cecum; decreased 
portal secondary acid 

levels; attenuated 

hepatic inflammation 

and fibrosis associated 

with non-alcoholic 

fatty liver disease 

development. 

Rakoff-Nahoum et al., 

2004 [44]. 

MyD88 deficient mice, 

a mouse model of 

inflammatory bowel 

diseases  
(no age provided) 

4 wk 

Worsening of the 

severity of dextran 

sodium sulfate-induced 

colitis. 

Rodrigues et al., 2017 

[37]. 

Male Swiss Webster 

mice (8 wk) 
4 wk 

Reduced fasting-

glucose levels and 

improved glucose 

tolerance. 

Xu et al., 2021 [50]. 
SPF male Balb/c mice 

(5 wk) 
4 wk 

Low-grade colonic 

inflammation; renal 

and liver dysfunction; 

increased serum levels 

of creatinine and urea, 

decreased serum levels 

of albumin. 

 
Abbreviations: mo, months; wk, weeks; T-MAO, trimethylamine-N-oxide; SP-MS, secondary progressive multiple 

sclerosis; NOD, non-obese diabetic; PND, postnatal day; SPF, Specific-pathogen-free; MMF, mycophenolate mofetil; 

MyD88, myeloid differentiation primary response 88.  
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Reference 
Animal 

model/species/sex/age 

Duration of antibiotic 

treatment 
Main effects 

Lach et al., 2020 [29]. 

Adolescent (PND 28-

49) and adult (PND 76-

97), male 

C57Bl/6OlaHsd mice 

3 wk 

Increased anxiety-like 

behavior at both ages; 

stronger freezing 

behavior and gene 

expression in the AMG 

during adolescence. 

Möhle et al., 2016 

[51].*  

Female C57BL/6 mice  

(6-8 wk) 
7 wk 

Reduced neurogenesis 
in HP and memory 

retention impairment. 

Heimesaat et al., 2006 

[36]. 

C57BL/6 mice  

(2-4 mo) 
6-8 wk 

Prevented development 

of ileitis following 

Toxoplasma gondii oral 

infection. 

Hoban et al. 2016 

[30]. 

Adult male Sprague-

Dawley rats  

(10 wk onwards) 

6-10 wk 

Increased depressive-

like behavior in the 

FST, increased levels 

of tryptophan in 

plasma, and reduced 
levels of 5-HT in HP. 

Kelly et al., 2016 [41]. 
Adult male Sprague-

Dawley rats 
28 days 

Induced behavioral and 

physiological features 

of depression after 

fecal microbiota 

transplantation from 

depressed patients. 

    

Table 2. Summary of antibiotics employed in diverse animal models of disease. Antibiotic cocktail 

two: ampicillin, metronidazole, vancomycin, ciprofloxacin, and imipenem (first published in 

Heimesaat et al., 2006).  
Abbreviations: mo, months; wk, weeks; PND, postnatal day; AMG, amygdala; HP, hippocampus; FST, forced 

swimming test; *according to Hoban et al. (2016), this protocol is a “chronic” administration.  
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Table 3. Summary of antibiotics employed in diverse animal models of disease: other cocktails of 

antibiotics. 
 

References Antibiotics 
Animal 

model/species/sex/age 

Duration of 

antibiotic 

treatment 

Main effects 

Fagarasan et 

al., 2002 [52]. 

Ampicillin, 

imipenem, 

neomycin, and 

metronidazole 

 AID+/+, AID+/- and 

AID-/- mice bred on a 

BALB/c or a 

C57BL/6 background  

(3 wk) 

2 wk 

Abolished 

hyperplasia of 

small intestinal 

lymphoid follicles 

associated with 

deficiency of AID. 

Fan et al., 2022 

[53]. 

Bacitracin, 

neomycin, and 

natamycin 

Male C57BL/6J mice 

(2 mo) 
11 days 

Reduced sucrose 

preference rate, 

longer immobility 

time in FST and 

TST; increased 

serum 

concentrations of 

ACTH and CORT; 

lower levels of 

BDNF; lower 

concentrations of 
5-HT and NE in 

PFC and HP. 

Frölich et al., 

2016 [54]. 

Ampicillin, 

bacitracin, 

meropenem, 

neomycin, and 

vancomycin 

Male C57BL/6N mice 

(8-11 wk) 
11 days 

Object recognition 

memory 

impairment; 

reduced expression 

of CLDN5 in HP; 

increased 

expression of TJP1 

in AMG. 

Guida et al., 

2018 [55].*  

 

Ampicillin 
streptomycin and 

clindamycin 

Male C57/bl6 mice  

(6 wk) 
2 wk 

Increased 

immobility time in 
TST and FST; 

reduced BDNF in 

HP. 

Kang et al., 

2017 [56]. 

Streptomycin, 

neomycin, 

vancomycin, and 

metronidazole 

Adult male Swiss 

Webster mice 

10 days 

(each 12 h,  

per day) 

Prevented the 

development of 

antinociceptive 

tolerance to 

chronic morphine. 

Saunders et al., 

2020 [57]. 
Streptomycin 

CD1 male mice (15-

20 wk) born to 

influenza virus-
infected mothers 

One single dose at 

PND28 

Reversed novel 

object recognition 

influenza virus-
induced 

impairment. 

Verdú et al., 

2006 [58]. 

Bacitracin, 

neomycin, and 

primaricin 

Female Swiss mice 

(6-8 wk) 
10 days 

Visceral 

hypersensitivity 

increased 

myeloperoxidase 

activity and 

increased substance 

P immunolabelling 

in the colon. 

Xu et al., 2021 

[50]. 

Ampicillin, 
vancomycin, 

metronidazole, 

neomycin, and 

streptomycin 

SPF male Balb/c mice 

(5 wk) 
4 wk 

Renal and liver 

dysfunction; 
increased serum 

urea and total 

cholesterol 

concentrations.  
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