In neurodegenerative disease or after brain injury, parenchymal cells in the central nervous system are activated to produce inflammatory mediators, mainly consisting of cytokine-induced factors, in a manner similar to, but clearly different from a peripheral inflammatory response. The upregulated expression of several extracellular matrix proteins in astrocytes located surrounding a neuritic plaque in Alzheimer''s disease is a good example of such a response. A family of mediators which is cytokine-induced during an inflammatory response in the periphery are the matrix metalloproteinases. Matrix metalloproteinases are calcium-requiring, zinc-containing endopeptidases that constitute a major component of the enzyme cascade responsible for degradation of extracellular matrix proteins such as collagen, proteoglycan and laminin. Little is known about the cellular source or the function of matrix metalloproteinases in the central nervous system or how their expression is regulated in brain. Thus, it was of interest to determine which factors of the so-called ''brain inflammatory response'' regulate the expression of these proteases in the nervous system. To this end, we measured the expression of matrix metalloproteinases in cultured rat astrocytes and microglia after treatment with various cytokines. Interleukin-1β, tumor necrosis factor-αand lipo-polysaccharide were potent stimulators of matrix metalloproteinase-2 (gelati-nase A) and matrix metalloproteinase-9 (gelatinase B) in cultured rat astrocytes; the effect of each secretagogue was inhibited in the presence of glucocorticoid. Interleukin-1βand lipopolysaccharide also stimulated the production of matrix metalloproteinase-3 (stromelysin-1) in astrocytes. In addition, activated microglia release matrix metalloproteinase-9. The ''coactivator'' of monocytic phagocytes, interferon-γ, rather than augmenting the response to lipopolysaccharide, inhibited it. Thus, cytokines appear to be potent regulators of matrix metalloproteinase production in astrocytes and microglia. The presence of these enzymes in ''inflamed'' central nervous system may suggest their involvement in the pathogenesis or progression of neurodegenerative diseases which are associated with an inflammatory component. Much remains to be learned about the potential substrates for these enzymes and the mechanism of their activation in the central nervous system.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.