Abstract
Objective: Epidemiological studies have shown that women of reproductive age have much less possibility of developing Parkinson disease (PD) than men. The beneficial effect of estrogen also has been well-described in both culture and animal models of PD. G protein-coupled estrogen receptor (GPER) is a membrane-associated estrogen receptor, and displayed a neuroprotective role in a mouse model of PD. Since GPER is highly expressed in microglia, we speculate that GPER mediates the neuroprotective function of estradiol through suppressing the neuroinflammation of PD. Methods: We investigated the effects of GPER agonist G1 and GPER antagonist G15 on the neurodegeneration of dopaminergic neuron, the activation of microglia, and the production of IL-1β, TNF-α, and IL-6 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animal model of parkinsonism. Furthermore, we confirmed the effects of GPER activation on the production of IL-1β, TNF-α, and IL-6 in an in vitro MPP+ model in BV2 microglial cells. Results: After 12-day treatment with G1, mice showed an increase in the number of tyrosine hydroxylase-immunoreactive cells, reduced activation of microglia, and the abatement of proinflammatory cytokines, and the anti-inflammatory effect of G1 was abolished by G15. Meanwhile, in vitro studies demonstrated that GPER activation also reduced the release of proinflammatory cytokines from BV2 microglial cells after MPP+ stimulation. Conclusion: Our data suggest that GPER mediates the anti-neuroinflammatory effect of estrogen in experimental PD progression.