Objective: The lifelong exposure to a variety of stressors activates a plethora of defense mechanisms, including the hypothalamic-pituitary-adrenal axis which releases neuropeptides affecting the immune responses. Here, we report data on the capability of monocytes from young subjects and centenarians to migrate towards chemotactic stimuli (formyl-methionyl-leucyl-phenylalanine, f-MLP; adrenocorticotropic hormone, ACTH, and corticotrophin-releasing hormone, CRH). Plasma levels of ACTH, CRH and cortisol were measured as an index of ongoing stress response. Methods: Monocyte chemotaxis towards f-MLP (10–8M), ACTH(1–24) (10–14 and 10–8M) and CRH (10–14 and 10–8M) was evaluated in vitro in young subjects (n = 8, age range 25–35 years) and centenarians (n = 9, age >100 years) and expressed as chemotactic index. In 9 young subjects and 6 centenarians, plasma levels of cortisol, ACTH and CRH were measured. Results: Monocyte chemotaxis towards f-MLP, ACTH(1–24) and CRH (10–8M) was well preserved in centenarians, except when the lowest concentration of CRH was used. CRH, ACTH and cortisol plasma levels were significantly higher in centenarians than in young subjects. Conclusions: The capability of monocytes from centenarians to respond to chemotactic neuropeptides is well preserved. The decreased responsiveness to the lowest concentration of CRH might be due to downregulation of CRH receptors or to defects in the intracellular signal transduction pathway. The high plasma levels of cortisol, CRH and ACTH in centenarians indicate an activation of the entire stress axis, likely counteracting the systemic inflammatory process occurring with age. This activation fits with the hypothesis that lifelong low-intensity stressors activate ancient, hormetic defense mechanisms, favoring healthy aging and longevity.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.