Objectives: This study was designed to determine immune and hormonal changes and their relationship with the incidence of upper respiratory tract infections (URTIs) during an extremely stressful military training (3 weeks of physical conditioning followed by a 5-day combat course with energy restriction, sleep deprivation and psychological stress). Methods: Blood samples were collected from 21 cadets (21 ± 2 years old) before training and after the combat course for analysis of leukocyte and lymphocyte subpopulations, serum cytokines [interleukin-6 (IL-6), IL-1β and IL-10], and hormones [catecholamines, cortisol, leptin, total insulin-like growth factor I (IGF-I), prolactin, dehydroepiandrosterone sulfate (DHEAS) and testosterone]. Symptoms of URTI were recorded from health logs and medical examinations during training. Results: After the combat course, total leukocyte and neutrophil counts were significantly increased while total lymphocytes were unchanged. In lymphocyte subsets, NK cells were reduced (p < 0.01), while CD4+ and CD19+ (B) cells were increased. Levels of IL-6 were increased (p < 0.01), while those of IL-1β and IL-10 were unchanged. Norepinephrine and dopamine levels were increased, while those of cortisol were reduced. Levels of leptin, testosterone, prolactin and total IGF-I were reduced, while those of DHEAS were increased. The incidence of URTI increased during the training (χ2 = 53.48, p < 0.05). After training data analysis showed a significant correlation between URTIs and NK cells (p = 0.0023). Training-induced changes in immune and hormonal parameters were correlated. Conclusions: Blood NK cell levels are related to increased respiratory infections during physical training in a multistressor environment. The training-induced decreases in immunostimulatory hormone levels may have triggered immunosuppression.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.