Objectives: Recent reports point to a role for the nitric oxide/nitric oxide synthase (NO/NOS) system in implantation. It has been suggested that inducible NOS expressed at peri-implantation would lead to enhanced NO production, which could promote the attachment of the blastocyst. Short-term administration of NO donors during the pre-implantation period reduced the pregnancy rate in a dose-dependent manner. Thus, it is thought that optimal levels of NO are critical for embryo implantation, so regulation of NOS must be crucial. Taking this into consideration, interleukin-10 (IL-10), synthesized and secreted by the embryo, could be modulating NOS during implantation. In this study we have investigated the in vitro effect of IL-10 on NOS in the uterus. Methods: To determine the effect of IL-10, slices of uterus from estrogenized mice were pre-incubated for 60 min with different concentrations of IL-10 and NOS activity was measured. Results: IL-10 (50 and 100 ng/ml in vitro) diminished NOS activity. The in vivo administration of lipopolysaccharide (LPS; 8 mg/kg) significantly increased the conversion of arginine into citrulline. This effect was abolished after 60 min of preincubation with IL-10 (100 ng/ml). The stimulatory effect of LPS and estrogen on NOS activity is exerted on the Ca-independent isoform and IL-10 in vitro abolished this increase. We observed that the uterus of pregnant mice on day 5 of gestation synthesized NO. This production was significantly inhibited by preincubation with IL-10 (100 ng/ml). Conclusions: This report demonstrates that IL-10 is capable of inhibiting NO synthesis in estrogenized, LPS-treated and pregnant rat uterus.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.