Electrical stimulation of the anterior hypothalamus in cats elicits a behavior called restlessness. When a switch is available for the cats to shut off the electrical stimulation, the cats learn to turn off the stimulation (switch-off response; SOR). In this study, we examined the relationship between the SOR and immunoendocrinological alterations. First of all, an escapable stimulation, in which cats could turn off the stimulation, was applied (escapable condition; EC). One month later, inescapable stimulation was delivered under the same conditions except for the fact that the cats could not turn off the stimulation (inescapable condition; IC). A behavioral analysis revealed that unstable patterns of behavior and a reduction in motor activity were observed in IC compared with those in EC. Furthermore, no significant changes in peripheral leukocytes were observed, while plasma epinephrine and cortisol transiently increased after the series of stimulations, but immediately decreased after the end of the stimulation in EC. On the other hand, there was a greater and prolonged increase in the number of peripheral granulocytes and the plasma levels of epinephrine and cortisol from 1 to 2 h after the stimulation until the end of the experiment in IC. Regarding the number of peripheral lymphocytes, CD4+ or CD8+ lymphocytes and the CD4+ to CD8+ ratio, no significant differences were found between EC and IC. These results suggest that the inability to escape from the aversive stimulation caused a decrease in movement and a prolonged alteration of the immune and endocrine systems, as is often observed in learned helplessness.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.