Objective: Recent studies on cerebral ischemia in the rat have demonstrated that administration of interleukin-1 receptor antagonist (IL-1ra) markedly reduces the volumes of infarcts which are associated with N-methyl-D-aspartate (NMDA)-mediated neurotoxicity. These observations suggested that endogenous interleukin-1 (IL-1) may be involved in the mediation of excitotoxic neuronal injury following ischemia. Method: In the present studies, we examined the role of interleukin-1β (IL-1β) in NMDA-related and microglia-induced excitotoxicity in cocultures of mixed neurons and microglia. Results: Our observations in these mixed cultures indicated that addition of IL-1β exaggerated NMDA and glutamate-evoked hippocampal neuron death. Addition of microglia, activated by lipopolysaccharide (LPS) and interferon-γ (IFN-γ), to cocultures of cortical neurons and glia induced significantly greater neurotoxicity when compared with cocultures of cortical neurons and untreated microglia. This neurotoxicity did not require that activated glia be in cell-to-cell contact with neurons. Addition of either IL-1ra or the NMDA receptor antagonist MK-801 to cocultures of cortical neurons and activated glia partially reversed the neuronal damage mediated by activated microglia. Finally, IL-1β concentrations in the supernatant of cocultures of cortical neurons and microglia treated by LPS and IFN-γ were markedly increased when compared with coculture of neurons with untreated microglia. Conclusion: These results suggest that both the NMDA receptor and the IL-1 receptor are involved in microglia-mediated neurotoxicity.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.