Objectives: Thyroid hormones exert immunomodulatory activities and the thymus is one of their target organs. We previously showed that triiodothyronine (T3) modulates thymic hormone production and extracellular matrix (ECM) expression by mouse thymic epithelial cells (TEC). This concept is enlarged herein by studying the effects of T3 in human TEC preparations including primary cultures derived from thymic nurse cell complexes, as well as human and murine TEC lines. Methods and Results: We observed that in all cases, ECM ligands and receptors (such as fibronectin, laminin, VLA-5 and VLA-6) are enhanced in vitro, as ascertained by immunocytochemistry, ELISA and cytofluorometry. Moreover, thymocyte adhesion to these TEC preparations is augmented by T3. Interestingly, TEC-thymocyte adhesion is also upregulated when thymocytes from T3-treated mice adhere to untreated TEC cultures. Such an enhancing effect of T3 upon TEC-thymocyte interactions is likely due to the increase in the expression of ECM ligands and receptors, since it is prevented when T3-treated TEC cultures are incubated with anti-ECM antibodies prior to the adhesion assay. We then tested whether T3 could modulate interactions between thymocytes and nonepithelial microenvironmental cells, exemplified herein by the phagocytic cells of the mouse thymic reticulum. In fact, in vitro treatment of these cells with T3 increases ECM ligands and receptors and augments their ability to adhere to thymocytes. Lastly, using immunochemistry-based assays, we showed the presence of the nuclear T3 receptor in all thymic microenvironmental cell preparations. Conclusion: Our data show that T3 upregulates ECM-mediated heterocellular interactions of thymocytes with distinct thymic microenvironmental cells, in both humans and mice.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.