Abstract
Background/Aim: Endothelin-converting enzyme (ECE) catalyzes the generation of endothelin-1 (ET-1) from its inactive precursor big-ET-1. Previous studies suggested that the ET-1 system is involved in the regulation of sodium excretion by the kidney. In particular, ET-1 via the ETB receptor-mediated signaling has been shown to increase renal medullary blood flow and decrease sodium transport in the collecting duct, both acting to promote renal sodium excretion. The present study was designed to evaluate the possibility that alterations in dietary salt intake may regulate the ECE-1. Methods: Wistar rats were fed for 3 days either with a diet containing low salt (0.01% NaCl), normal salt (0.5% NaCl), or high salt intake, either by high salt diet (4% NaCl) or normal salt diet plus 0.9% saline drinking. The expression of and immunoreactive protein levels of ECE-1 in the renal medulla was studied by RT-PCR, Northern blotting and Western blotting techniques. Results: The expression of ECE-1 mRNA (by RT-PCR and Northern blotting), as well as the immunoreactive levels of ECE-1, were significantly higher in the renal medulla of rats exposed to high salt intake than in rats on normal salt diet. Conclusion: The findings suggest that upregulation of ECE-1, leading to increased generation of ET-1 in the renal medulla, may be a compensatory mechanism promoting enhanced sodium excretion by the kidney in response to high salt intake.