Abstract
The factors affecting the urinary excretion of oxalate are critical to the risk of forming calcium oxalate stones. This article reviews the role of dietary and intestinal oxalate in determining the level of oxalate excreted in urine. The amount of oxalate available for absorption throughout the intestine is highly dependent on the state of oxalate (a) in the food ingested, and (b) in the intestinal contents at each section of the intestinal tract since only the soluble form of oxalate can be absorbed. In this respect, the solubility of calcium oxalate (CaOx) under the prevailing conditions is paramount in determining the amount of oxalate available for absorption at any particular site. In turn, the main factors that control how much oxalate is in the soluble form are pH and the concentrations of calcium, magnesium and (indirectly) phosphate. Based on these parameters, a model of the intestine has been constructed which brings together the available evidence on the prevailing concentrations of these various factors at different sites in the intestine after allowing for dietary intake and the concentration of the above ions in intestinal secretions. The model then calculates the likely concentration of oxalate that is in the soluble form at each site and therefore available for passive absorption at that site. The model shows that oxalate is likely to be absorbed in the stomach, although it can be also absorbed in the small intestine, particularly at the distal end (after the absorption of calcium), and in the colon, since, on a normal intake of calcium and phosphate, most of the calcium in the large bowel would be anticipated to be precipitated as calcium phosphate under the prevailing alkaline conditions and high concentration of phosphate. The amount of free oxalate in the colon is also controlled by the presence or absence of Oxalobacter formigenes, an anaerobe that has an obligate requirement for oxalate as a source of energy and cellular carbon.