One of the earliest clinically detectable abnormalities in diabetic nephropathy is microalbuminuria that eventually progresses to proteinuria. The degree of proteinuria correlates with the progression of glomerulosclerosis and tubulointerstitial fibrosis. In the glomerulus, a typical podocytopathy develops that participates in the initiation of glomerulosclerosis and the accelerated plasma protein leakage across the glomerular basement membrane (GBM) into Bowman’s space. Downstream into the tubular compartment, the proteinuria induces proinflammatory and profibrogenetic injury in tubular cells which can facilitate the development of interstitial fibrosis and tubular atrophy. It has long been held that hemodynamic changes and the loss of negatively charged proteoglycans in the GBM are important mediators of proteinuria. More recently, biopsy studies in humans with diabetic kidney disease have provided strong evidence that podocytes are injured very early in the course of nephropathy. This podocytopathy – which is characterized by decreased podocyte number and/or density, GBM thickening and altered matrix composition, and foot process effacement – correlates closely with the development and progression of albuminuria. Components of the diabetic milieu (high glucose, accumulation of glycated proteins, high intrarenal angiotensin II (ANG II), and hypertension-induced mechanical stress) result in activation of cytokine systems, the most important of which are transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor-A (VEGF-A). ANG II-stimulated podocyte-derived VEGF, through a novel autocrine signaling loop, appears to be a major cause of nephrin downregulation and the development of proteinuria. Nephrin is an important protein of the slit diaphragm with anti-apoptotic signaling properties. TGF-β1 causes podocyte apoptosis and an increase in extracellular matrix deposition. As a consequence, the denuded GBM adheres to Bowman’s capsule initiating the development of glomerulosclerosis. Good control of hyperglycemia and hypertension and maximal inhibition of ANG II are essential steps in preventing the development and progression of diabetic nephropathy.

1.
Hostetter TH: Hyperfiltration and glomerulosclerosis. Semin Nephrol 2003;23:194–199.
2.
Chen S, Wolf G, Ziyadeh FN: The renin-angiotensin system in diabetic nephropathy. Contrib Nephrol. Basel, Karger, 2001, vol 135, pp 212–221.
3.
Tsuchida K, Cronin B, Sharma K: Novel aspects of transforming growth factor-beta in diabetic kidney disease. Nephron 2002;92:7–21.
4.
Thomson SC, Vallon V, Blantz RC: Kidney function in early diabetes: the tubular hypothesis of glomerular filtration. Am J Physiol 2004;286:F8–F15.
5.
Wolf G, Ziyadeh FN: Molecular mechanisms of diabetic hypertrophy. Kidney Int 1999;56:393–405.
6.
Kalluri R: Proteinuria with and without glomerular podocyte effacement. J Am Soc Nephrol 2006;17:2383–2389.
7.
Zeisberg M, Ericksen MB, Hamano Y, Neilson EG, Ziyadeh F, Kalluri R: Differential expression of type IV collagen isoforms in rat glomerular endothelial and mesangial cells. Biochem Biophys Res Commun 2002;295:401–407.
8.
Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG, Coplon NS, Sun L, Meyer TW: Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest 1997;99:342–348.
9.
Doublier S, Salvidio G, Lupia E, Ruotsalainen V, Verzola D, Deferrari G, Camussi G: Nephrin expression is reduced in human diabetic nephropathy. Evidence for a distinct role for glycated albumin and angiotensin II. Diabetes 2003;52:1023–1030.
10.
Liebau MC, Lang D, Bohm J, Endlich N, Bek MJ, Witherden I, Mathieson PW, Saleem MA, Pavenstadt H, Fischer KG: Functional expression of the renin-angiotensin system in human podocytes. Am J Physiol 2006;290:F710–F719.
11.
Flannery PJ, Spurney RF: Transactivation of the epidermal growth factor receptor by angiotensin II in glomerular podocytes. Nephron Exp Nephrol 2006;103:e109–e118.
12.
Wolf G, Chen S, Ziyadeh FN: From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy. Diabetes 2005;54:1626–1634.
13.
Gruden G, Perin PC, Camussi G: Insight on the pathogenesis of diabetic nephropathy from the study of podocyte and mesangial cell biology. Curr Diab Rev 2005;1:27–40.
14.
Benigni A, Zoja C, Tomasoni S, Campana M, Corna D, Zanchi C, Gagliardini E, Garofano E, Rottoli D, Ito T, Remuzzi G: Transcriptional regulation of nephrin gene by peroxisome proliferator-activated receptor-gamma agonist: molecular mechanism of the antiproteinuric effect of pioglitazone. J Am Soc Nephrol 2006;17:1624–1632.
15.
Chen S, Lee JS, Iglesias-de la Cruz MC, Wang A, Izquierdo-Lahuerta A, Gandhi NK, Danesh FR, Wolf G, Ziyadeh FN: Angiotensin II stimulates alpha3(IV) collagen production in mouse podocytes via TGF-beta and VEGF signalling: implications for diabetic glomerulopathy. Nephrol Dial Transplant 2005;20:1320–1328.
16.
Rincon-Choles H, Vasylyeva TL, Pergola PE, Bhandari B, Bhandari K, Zhang JH, Wang W, Gorin Y, Barnes JL, Abboud HE: ZO-1 expression and phosphorylation in diabetic nephropathy. Diabetes 2006;55:894–900.
17.
Abbate M, Zoja C, Morigi M, Rottoli D, Angioletti S, Tomasoni S, Zanchi C, Longaretti L, Donadelli R, Remuzzi G: Transforming growth factor-beta1 is up-regulated by podocytes in response to excess intraglomerular passage of proteins: a central pathway in progressive glomerulosclerosis. Am J Pathol 2002;161:2179–2193.
18.
Sung SH, Ziyadeh FN, Wang A, Pyagay PE, Kanwar YS, Chen S: Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice. J Am Soc Nephrol 2006;17:3093–3104.
19.
Schiffer M, Mundel P, Shaw AS, Böttinger EP: A novel role for the adaptor molecule CD2-associated protein in transforming growth factor-β-induced apoptosis. J Biol Chem 2004;279:37004–37012.
20.
Shankland SJ: The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int 2006;69:2131–2147.
21.
Susztak K, Raff AC, Schiffer M, Böttinger EP: Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 2006;55:225–233.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.