Introduction: Preterm newborns struggle with maintaining an adequate respiratory pattern; early caffeine administration is suggested to stimulate respiration and reduce bronchopulmonary dysplasia, however, its consequences on the immature cerebellum remains unknown. This study aimed to assess the impact of early caffeine administration, at standard and high doses, accompanied by supplemental oxygen on cerebellar development in an experimental model. Methods: Five groups of Wistar pups were formed (n = 8 offspring/group): (a) negative control: no intervention; (b) placebo: pups remaining from birth until the 7th day of life (DOL) exposed to fractional inspired oxygen (FiO2) 45%, resembling preterm infant condition and as a placebo, 0.2 mL oral 5% dextrose, from the first DOL until the 14th DOL; (c) caffeine group: oral caffeine, 1st DOL 20 mg/kg, and from 2nd to 14th DOL, 5 mg/kg (standard dose); (d) caffeine at the standard dose, plus O2: during the first 7 DOLs (FiO2: 45%); (e) caffeine: 40 mg/kg in the first DOL, 10 mg/kg the next 14 DOLs, plus O2 in the first 7 DOLs (FiO2: 45%). Subjects were sacrificed on their 15th DOL; measurements were taken from the cerebellum, specifically the external granular layer (EGL) and molecular layer (ML), with quantification of cell migration. Results: Caffeine administration in pups resulted in a delay in cerebellum development based on persistent transitional EGL cells; this finding was exacerbated in groups exposed to caffeine plus O2, as evident from the thicker EGL. The negative control group showed near-complete cell migration with a thicker ML and a significantly smaller EGL. Conclusions: Early caffeine administration in newborn rats disrupts cerebellar cortex cell processes and connectivity pathways, with exacerbated effects in groups receiving caffeine plus O2.

1.
Dobson
NR
,
Hunt
CE
.
Caffeine: an evidence-based success story in VLBW pharmacotherapy
.
Pediatr Res
.
2018
;
84
(
3
):
333
40
.
2.
Schmidt
B
,
Roberts
RS
,
Davis
P
,
Doyle
LW
,
Barrington
KJ
,
Ohlsson
A
, et al
.
Caffeine therapy for apnea of prematurity
.
N Engl J Med
.
2006
;
354
(
20
):
2112
21
.
3.
Wilson
C
.
The clinical toxicology of caffeine: a review and case study
.
Toxicol Rep
.
2018
;
5
:
1140
52
.
4.
Moschino
L
,
Zivanovic
S
,
Hartley
C
,
Trevisanuto
D
,
Baraldi
E
,
Roehr
CC
.
Caffeine in preterm infants: where are we in 2020
.
ERJ Open Res
.
2020
;
6
(
1
):
00330-2019
.
5.
Rossor
T
,
Bhat
R
,
Ali
K
,
Peacock
J
,
Rafferty
GF
,
Greenough
A
.
The effect of caffeine on the ventilatory response to hypercarbia in preterm infants
.
Pediatr Res
.
2018
;
83
(
6
):
1152
7
.
6.
Yu
T
,
Balch
AH
,
Ward
RM
,
Korgenski
EK
,
Sherwin
CMT
.
Incorporating pharmacodynamic considerations into caffeine therapeutic drug monitoring in preterm neonates
.
BMC Pharmacol Toxicol
.
2016
;
17
(
1
):
22
.
7.
Chavez
L
,
Bancalari
E
.
Caffeine: some of the evidence behind its use and abuse in the preterm infant
.
Neonatology
.
2022
;
119
(
4
):
428
32
.
8.
Tana
M
,
Tirone
C
,
Aurilia
C
,
Lio
A
,
Paladini
A
,
Fattore
S
, et al
.
Respiratory management of the preterm infant: supporting evidence-based practice at the bedside
.
Children
.
2023
;
10
(
3
):
535
.
9.
Saugstad
PD
,
Oei
JL
,
Lakshminrusimba
S
,
Vento
M
.
Oxygen therapy of the newborn, from molecular understanding to clinical practice
.
Pediatr Res
.
2019
;
85
(
1
):
20
9
.
10.
Kapadia
V
,
Oei
JL
.
Optimizing oxygen therapy for preterm infants at birth: are we there yet
.
Semin Fetal Neonatal Med
.
2020
;
25
(
2
):
101081
.
11.
Finch-Edmondosn
M
,
Morgan
C
,
Hunt
RW
,
Novak
I
.
Emergent prophylactic, reparative and restorative brain interventions for infants born preterm with cerebral palsy
.
Front Physiol
.
2019
;
10
:
15
.
12.
Stoodley
CJ
,
Limperopoulos
C
.
Structure-function relationships in the developing cerebellum: evidence from early-life cerebellar injury and neurodevelopmental disorders
.
Semin Fetal Neonatal Med
.
2016
;
21
(
5
):
356
64
.
13.
Del Rio-Bermudez
C
,
Plumeau
AM
,
Sattler
NJ
,
Sokoloff
G
,
Blumberg
MS
.
Spontaneous activity and functional connectivity in the developing cerebellorubral system
.
J Neurophysiol
.
2016
;
116
(
3
):
1316
27
.
14.
Spoto
G
,
Amore
G
,
Vetri
L
,
Quatrosi
G
,
Cafeo
A
,
Gitto
E
, et al
.
Cerebellum and prematurity: a complex interplay between disruptive and dysmaturational events
.
Front Syst Neurosci
.
2021
;
15
:
655164
.
15.
Sathyanesan
A
,
Zhou
J
,
Scafidi
J
,
Heck
DH
,
Sillitoe
RV
,
Gallo
V
.
Emerging connections between cerebellar development, behaviour and complex brain disorders
.
Nat Rev Neurosci
.
2019
;
20
(
5
):
298
313
.
16.
Haldipur
P
,
Aldinger
KA
,
Bernardo
S
,
Deng
M
,
Timms
AE
,
Overman
LM
, et al
.
Spatiotemporal expansion of primary progenitor zones in the developing human cerebellum
.
Science
.
2019
;
366
(
6464
):
454
60
.
17.
Lemus-Varela
L
,
Sola
A
.
Algorithm for the therapeutic approach to apnea of prematurity
.
J Neonatal Clin Pediatr
.
2021
;
8
(
1
):
1
8
.
18.
Bosemani
T
,
Poretti
A
.
Cerebellar disruptions and neurodevelopmental disabilities
.
Semin Fetal Neonatal Med
.
2016
;
21
(
5
):
339
48
.
19.
George
JM
,
Boyd
RN
,
Colditz
PB
,
Rose
SE
,
Pannek
K
,
Fripp
J
, et al
.
PPREMO: a prospective cohort study of preterm infant brain structure and function to predict neurodevelopmental outcome
.
BMC Pediatr
.
2015
;
15
:
123
39
.
20.
Usman
IM
,
Adebisi
SS
,
Musa
SA
,
Iliya
IA
,
Archibong
VB
,
Lemuel
AM
, et al
.
Tamarindus indica ameliorates behavioral and cytoarchitectural changes in the cerebellar cortex following prenatal aluminum chloride exposure in Wistar rats
.
Anat Cell Biol
.
2022
;
55
(
3
):
320
9
.
21.
Gano
D
,
Ferreiro
DM
.
Altered cerebellar development in preterm newborns: chicken or Egg
.
J Pediatr
.
2017
;
182
:
11
3
.
22.
Allin
MPG
.
Novel insights from quantitative imaging of the developing cerebellum
.
Semin Fetal Neonatal Med
.
2016
;
21
(
5
):
333
8
.
23.
McPherson
C
,
Neil
JJ
,
Tjoeng
TH
,
Pineda
R
,
Inder
TE
.
A pilot randomized trial of high-dose caffeine therapy in preterm infants
.
Pediatr Res
.
2015
;
78
(
2
):
198
204
.
24.
Altman
J
,
Bayer
SA
.
Regional differences in the stratified transitional field and the honeycomb matrix of the developing human cerebral cortex
.
J Neurocytol
.
2002
;
31
(
8–9
):
613
32
.
25.
Oyefeso
FA
,
Muotri
AR
,
Wilson
CG
,
Pecaut
MJ
.
Brain organoids: a promising model to assess oxidative stress-induced central nervous system damage
.
Dev Neurobiol
.
2021
;
81
(
5
):
653
70
.
26.
Endesfelder
S
,
Strauß
E
,
Scheuer
T
,
Schmitz
T
,
Bührer
C
.
Antioxidative effects of caffeine in a hyperoxia-based rat model of bronchopulmonary dysplasia
.
Respir Res
.
2019
;
20
(
1
):
88
.
27.
Oliphant
EA
,
McKinlay
CJD
,
McNamara
D
,
Cavadino
A
,
Alsweiler
JM
.
Caffeine to prevent intermmittent hipoxaemia in late preterm infants: randomised controlled dosage trial
.
Arch Dis Child Fetal Neonatal Ed
.
2023
;
108
:
f103
13
.
28.
Alur
P
,
Bollampalli
V
,
Bell
T
,
Hussain
N
,
Liss
J
.
Serum caffeine concentrations and short-term outcomes in premature infants of ≤29 weeks of gestation
.
J Perinatol
.
2015
;
35
(
6
):
434
8
.
29.
Limperopoulos
C
.
The vulnerable immature cerebellum
.
Semin Fetal Neonatal Med
.
2016
;
21
(
5
):
293
4
.
30.
Pierson
CR
,
Sufiani
FA
.
Preterm birth and cerebellar neuropathology
.
Semin Fetal Neonatal Med
.
2016
;
21
(
5
):
305
11
.
You do not currently have access to this content.