Abstract
The purpose of this review article is to document from the literature values of blood/plasma glucose concentration and associated clinical signs and conditions in newborn infants (both term and preterm) that indicate a reasonable clinical probability that hypoglycemia is a proximate cause of acute and/or sustained neurological injury and to review the physiological and pathophysiological responses to hypoglycemia that may influence the ultimate outcome of newborns with low blood glucose. Our overall conclusion is that there is inadequate information in the literature to define any one value of glucose below which irreparable hypoglycemic injury to the central nervous system occurs, at any one time or for any defined period of time, in a population of infants or in any given infant. Clinical signs of prolonged and severe neurological disturbance (coma, seizures), extremely and persistently low plasma/blood glucose concentrations (0 to <1.0 mmol/l [0 to <18–20 mg/dl] for more than 1–2 h), and the absence of other obvious central nervous system (CNS) pathology (hypoxia-ischemia, intracranial hemorrhage, infection, etc.) are important for the diagnosis of injury due to glucose deficiency. Specific conditions, such as persistent hyperinsulinemia with severe hypoglycemic episodes that include seizures, also contribute to the diagnosis of hypoglycemic injury. Such lack of definitive measures of injury specific to glucose deficiency indicates that clinicians should be on the alert for infants at risk of hypoglycemia and for clinical signs and conditions that might herald severe hypoglycemia; they should have a low threshold for investigating and diagnosing ‘hypoglycemia’ with frequent measurements of plasma/blood glucose concentration; and they should treat low glucose concentrations promptly and maintain them in a safe range. Because there is no conclusive evidence or consensus in the literature that defines an absolute value or duration of ‘hypoglycemia’ that must occur, with our without related clinical complications, to produce neurological injury, clinicians should consider the information currently available, determine a ‘target’ plasma or blood glucose concentration that is acceptable, and treat infants with glucose concentrations below this value accordingly. Our intent in this review article is to highlight the studies relevant to this issue and help clinicians formulate a safe and, hopefully, effective strategy for the diagnosis and treatment of hypoglycemia.