Background: Necrotizing enterocolitis (NEC) is an important neonatal disease with a high mortality rate; erythropoietin (Epo) is a hematopoietic growth factor. Functional Epo receptors are in the fetal and postnatal small bowel and their ligands are available for binding. Excessive nitric oxide (NO) production by an isoform of NO synthase inducible by inflammatory stimuli leads to changes in vascular permeability and tissue injury. The aim of this study was to investigate NO formation in an experimental model of NEC and the possible role of NO in the protection Epo provides against NEC. Methods: Twenty-four Wistar albino rat pups were divided into three groups: group 1 = control; group 2 = hypoxia-reoxygenation and saline; group 3 = hypoxia-reoxygenation and recombinant human EPO (rhEpo) pretreatment. rhEpo was given 750 U/kg/week by intraperitoneal injection 3 times a week for 2 weeks. On the 15th day, hypoxia was induced by placing the pups in a 100% CO2 chamber for 5 min. After the hypoxia period the pups were reoxygenated for 10 min with 100% O2 and returned to their mothers. All pups were killed 4 h after the hypoxia-reoxygenation period was over. The abdomen was opened and representative samples of injured areas were taken for histopathologic examination. Then nitrite levels were determined in the intestine by Griess Reagent. Results: On histopathological examination, injury scores in group-2 animals were found to be significantly higher than in group-3 animals (p = 0.001). Significantly increased intestinal nitrite levels were found in group-2 rats compared to the rats of groups 1 and 3 (p = 0.001 and p = 0.001, respectively). There was a positive correlation between the histological findings and the intestinal nitrite levels in group-2 and -3 animals (r = 0.94, p = 0.001; r = 0.99, p = 0.001, respectively). Conclusion: The present study demonstrates that the Epo-pretreated group had decreased levels of NO and limited mucosal necrosis in intestinal tissue samples. We believe that these results deserve further experimental studies in order to elucidate the possible effector mechanisms involved in the inhibitory relationship between Epo, NO and NEC.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.