Lipopolysaccharide (LPS) produces varied systemic metabolic effects. We studied the effects of LPS on the cardiac fatty acid profile and its relationship to energy metabolism and inflammatory mediators that included TNF-α and nitric oxide synthase (NOS) in 10-day-old neonatal rat pups. Rat pups received an i.p. injection of LPS after a 4-hour starvation period, followed by collection of blood and cardiac tissue 4 h following LPS administration. Compared to controls, LPS induced significant hypoglycemia and hyperlactacidemia, suggesting the development of endotoxic shock. The result was a significant depression in total fatty acid levels as well as non-esterified fatty acid in the cardiac tissue of the LPS-treated pups. In addition, LPS-treated pups also showed a significant increase in TNF-α, NOS levels with a depressed redox state and energy metabolism in cardiac tissue. These observations suggest that endotoxic shock in 10-day-old rat pups induces a systemic inflammatory response with a depression in fatty acid metabolism that may contribute to myocardial failure.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.