Ventilation with nitric oxide (NO) is increasingly being used to treat pulmonary hypertension in the newborn. In the brain, NO has vasoactive properties and is involved in neurotransmission. However, the effect of inhaled NO on the cerebral blood flow (CBF) and on the cerebral activity is not known. Furthermore, there is little information on the influence of this free radical gas on the redox status in pulmonary vessels. We therefore investigated the effect of inhaled NO (2–60 ppm) on CBF, cerebral activity and redox status in blood effluent from the pulmonary circulation in 6 ventilated newborn lambs before and during group B streptococci (GBS)-induced pulmonary hypertension. Blood pressure in the pulmonary artery (Pap) and aorta (Pao), carotid artery blood flow (Qcar) to assess changes in CBF, and electrocortical activity were measured. Blood gases, indices of free radical status and methemoglobin were determined in blood samples obtained from the left ventricle. Inhalation of NO, before and during GBS-induced pulmonary hypertension, decreased Pap and PCO2 and increased PO2. Multiple linear regression revealed that Qcar was positively related to PCO2, but not to inhaled NO or PO2 before or during GBS conditions. Electrocortical activity and indices of antioxidative capacity and lipid peroxidation did not change significantly. Methemoglobin was not detected. In conclusion, inhalation of NO (up to 60 ppm) lowered Pap without directly affecting CBF, electrocortical activity, and redox status in the pulmonary vessels. CBF, however, can indirectly be influenced by NO-mediated changes in PCO2·

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.