Background: Neuroendocrine neoplasms (NENs) are a heterogeneous group of tumors arising from neuroendocrine cells, exhibiting a wide range of behaviors from indolent to highly aggressive forms. Treatment options remain limited, particularly for progressive cases. Cabozantinib, a multitarget tyrosine kinase inhibitor, has demonstrated potential in targeting key pathways related to tumor growth, angiogenesis, and metastasis. Summary: This review provides a comprehensive analysis of cabozantinib’s therapeutic role across various NEN subtypes, including gastroenteropancreatic NENs, lung NENs, pheochromocytomas/paragangliomas, Merkel cell carcinoma, presacral NENs, pituitary neuroendocrine tumors, and neuroendocrine prostate cancer. Key Messages: The paper discusses several preclinical and clinical studies that demonstrate the efficacy of cabozantinib in slowing tumor progression and improving progression-free survival, particularly in patients with progressive, well-differentiated NENs. However, cabozantinib’s complex toxicity profile limits its broad application, necessitating further research to optimize dosing, particularly in syndromic NENs. Ongoing trials are investigating cabozantinib in combination with somatostatin analogs, peptide receptor radionuclide therapy, temozolomide, and immunotherapies in order to overcome treatment resistance and expanding therapeutic strategies for advanced NENs.

1.
Modica
R
,
Benevento
E
,
Liccardi
A
,
Cannavale
G
,
Minotta
R
,
Di Iasi
G
, et al
.
Recent advances and future challenges in the diagnosis of neuroendocrine neoplasms
.
Minerva Endocrinol
.
2024
;
49
(
2
):
158
74
.
2.
Faivre
S
,
Niccoli
P
,
Castellano
D
,
Valle
JW
,
Hammel
P
,
Raoul
JL
, et al
.
Sunitinib in pancreatic neuroendocrine tumors: updated progression-free survival and final overall survival from a phase III randomized study
.
Ann Oncol
.
2017
;
28
(
2
):
339
43
.
3.
Grillo
F
,
Florio
T
,
Ferraù
F
,
Kara
E
,
Fanciulli
G
,
Faggiano
A
, et al
.
Emerging multitarget tyrosine kinase inhibitors in the treatment of neuroendocrine neoplasms
.
Endocr Relat Cancer
.
2018
;
25
(
9
):
R453
66
.
4.
Elisei
R
,
Schlumberger
MJ
,
Muller
SP
,
Schoffski
P
,
Brose
MS
,
Shah
MH
, et al
.
Cabozantinib in progressive medullary thyroid cancer
.
J Clin Oncol
.
2013
;
31
(
29
):
3639
46
.
5.
Cella
CA
,
Minucci
S
,
Spada
F
,
Galdy
S
,
Elgendy
M
,
Ravenda
PS
, et al
.
Dual inhibition of mTOR pathway and VEGF signalling in neuroendocrine neoplasms: from bench to bedside
.
Cancer Treat Rev
.
2015
;
41
(
9
):
754
60
.
6.
Murat
CDB
,
Da Rosa
PWL
,
Fortes
MAHZ
,
Corrêa
L
,
Machado
MCC
,
Novak
EM
, et al
.
Differential expression of genes encoding proteins of the HGF/MET system in insulinomas
.
Diabetol Metab Syndr
.
2015
;
7
(
1
):
84
5
.
7.
Hansel
DE
,
Rahman
A
,
House
M
,
Ashfaq
R
,
Berg
K
,
Yeo
CJ
, et al
.
Met proto-oncogene and insulin-like growth factor binding protein 3 overexpression correlates with metastatic ability in well-differentiated pancreatic endocrine neoplasms
.
Clin Cancer Res
.
2004
;
10
(
18 Pt 1
):
6152
8
.
8.
Krampitz
GW
,
George
BM
,
Willingham
SB
,
Volkmer
JP
,
Weiskopf
K
,
Jahchan
N
, et al
.
Correction for Krampitz et al., Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors
.
Proc Natl Acad Sci USA
.
2016
;
113
(
37
):
E5538
.
9.
Reuther
C
,
Heinzle
V
,
Spampatti
M
,
Vlotides
G
,
De Toni
E
,
Spöttl
G
, et al
.
Cabozantinib and tivantinib, but not INC280, induce antiproliferative and antimigratory effects in human neuroendocrine tumor cells in vitro: evidence for “Off-Target” effects not mediated by c-met inhibition
.
Neuroendocrinology
.
2016
;
103
(
3–4
):
383
401
.
10.
Sennino
B
,
Ishiguro-Oonuma
T
,
Wei
Y
,
Naylor
RM
,
Williamson
CW
,
Bhagwandin
V
, et al
.
Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors
.
Cancer Discov
.
2012
;
2
(
3
):
270
87
.
11.
Cella
CA
,
Cazzoli
R
,
Fazio
N
,
De Petro
G
,
Gaudenzi
G
,
Carra
S
, et al
.
Cabozantinib in neuroendocrine tumors: tackling drug activity and resistance mechanisms
.
Endocr Relat Cancer
.
2023
;
30
(
12
):
e230232
.
12.
Chan
JA
,
Faris
JE
,
Murphy
JE
,
Blaszkowsky
LS
,
Kwak
EL
,
McCleary
NJ
, et al
.
Phase II trial of cabozantinib in patients with carcinoid and pancreatic neuroendocrine tumors (pNET)
.
J Clin Oncol
.
2017
;
35
(
4_Suppl l
):
228
.
13.
Chan
JA
,
Geyer
S
,
Zemla
T
,
Knopp
MV
,
Behr
S
,
Pulsipher
S
, et al
.
Phase 3 trial of cabozantinib to treat advanced neuroendocrine tumors
.
N Engl J Med
.
2024
;
16
.
14.
Abstracts Presented at the 13th
.
Annual multidisciplinary neuroendocrine tumor medical virtual symposium of the north American neuroendocrine tumor society, october 2-3, 2020
.
Pancreas
.
2021
;
50
(
3
):
441
67
.
15.
Corti
F
,
Brizzi
MP
,
Amoroso
V
,
Giuffrida
D
,
Panzuto
F
,
Campana
D
, et al
.
Assessing the safety and activity of cabozantinib combined with lanreotide in gastroenteropancreatic and thoracic neuroendocrine tumors: rationale and protocol of the phase II LOLA trial
.
BMC
.
2023
;
23
(
1
):
908
10
.
16.
Study of cabozantinib with Lu-177 in patients with somatostatin receptor 2 positive neuroendocrine tumors
[cited 2024 Oct 19]. Available from: https://clin.larvol.com/trial-detail/NCT05249114
17.
Clemente
O
,
Starita
N
,
Bracigliano
A
,
Cives
M
,
Tatangelo
F
,
Barretta
ML
, et al
.
1200P A phase II single-arm interventional trial evaluating the activity and safety of CABOzantinib (CBZ) plus TEMozolomide (TMZ) in lung and gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) progressed after SSA therapy, everolimus, sunitinib or PRRT: CABOTEM Trial
.
Ann Oncol
.
2023
;
34
:
S708
.
18.
Hernando
J
,
Molina-Cerrillo
J
,
Grande
E
,
Benavent Viñuales
M
,
Garcia-Carbonero
R
,
Teule
A
, et al
.
Cabozantinib plus atezolizumab in patients with advanced and progressive neuroendocrine neoplasms (NENs): a prospective multi-cohort basket phase II trial (CABATEN/GETNE-T1914)
.
J Clin Oncol
.
2024
;
42
(
16_Suppl l
):
4128
.
19.
Weber
MMM
,
Apostolidis
L
,
Krug
S
,
Rinke
A
,
Gruen
B
,
Michl
P
, et al
.
1185MO Activity and safety of avelumab alone or in combination with cabozantinib in patients with advanced high grade neuroendocrine neoplasias (NEN G3) progressing after chemotherapy. The phase II, open-label, multicenter AVENEC and CABOAVENEC trials
.
Ann Oncol
.
2023
;
34
:
S702
.
20.
Record history | ver. 1: 2019-12-11 | NCT04197310 | ClinicalTrials.gov [cited 2024 Oct 24]. Available from: https://clinicaltrials.gov/study/NCT04197310?tab=history&a=1
21.
Borchiellini
D
,
Maillet
D
.
Clinical activity of immunotherapy-based combination first-line therapies for metastatic renal cell carcinoma: the right treatment for the right patient
.
Bull Cancer
.
2022
;
109
(
2S
):
2S4
18
.
22.
Rekhtman
N
.
Lung neuroendocrine neoplasms: recent progress and persistent challenges
.
Mod Pathol
.
2022
;
35
(
Suppl 1
):
36
50
.
23.
Rindi
G
,
Mete
O
,
Uccella
S
,
Basturk
O
,
La Rosa
S
,
Brosens
LAA
, et al
.
Overview of the 2022 WHO classification of neuroendocrine neoplasms
. In:
Kd 33, endocrine pathology
.
Springer US
;
2022
; p.
115
54
.
24.
Liccardi
A
,
Colao
A
,
Modica
R
.
Gender differences in lung neuroendocrine tumors: a single-center experience
.
Neuroendocrinology
.
2024
:
1
10
.
25.
Granberg
D
,
Wilander
E
,
Öberg
K
.
Expression of tyrosine kinase receptors in lung carcinoids
.
Tumour Biol
.
2006
;
27
(
3
):
153
7
.
26.
Ohtaki
Y
,
Kaira
K
,
Yajima
T
,
Erkhem-Ochir
B
,
Kawashima
O
,
Kamiyoshihara
M
, et al
.
Comprehensive expressional analysis of chemosensitivity-related markers in large cell neuroendocrine carcinoma of the lung
.
Thorac Cancer
.
2021
;
12
(
20
):
2666
79
.
27.
Ma
PC
,
Jagadeeswaran
R
,
Jagadeesh
S
,
Tretiakova
MS
,
Nallasura
V
,
Fox
EA
, et al
.
Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer
.
Cancer Res
.
2005
;
65
(
4
):
1479
88
.
28.
Song
J
,
Li
M
,
Tretiakova
M
,
Salgia
R
,
Cagle
PT
,
Husain
AN
.
Expression patterns of PAX5, c-Met, and paxillin in neuroendocrine tumors of the lung
.
Arch Pathol Lab Med
.
2010
;
134
(
11
):
1702
5
.
29.
Dicitore
A
,
Cantone
MC
.
Targeting receptor tyrosine kinases in neuroendocrine neoplasm: what’s going on with lung carcinoids
.
Minerva Endocrinol
.
2022
;
47
(
3
):
261
3
.
30.
Lenders
JWM
,
Duh
QY
,
Eisenhofer
G
,
Gimenez-Roqueplo
AP
,
Grebe
SKG
,
Murad
MH
, et al
.
Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline
.
J Clin Endocrinol Metab
.
2014
;
99
(
6
):
1915
42
.
31.
Nölting
S
,
Bechmann
N
,
Taieb
D
,
Beuschlein
F
,
Fassnacht
M
,
Kroiss
M
, et al
.
Personalized management of pheochromocytoma and paraganglioma
.
Endocr Rev
.
2022
;
43
(
2
):
199
239
.
32.
Dahia
PLM
.
Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity
.
Nat Rev Cancer
.
2014
;
14
(
2
):
108
19
.
33.
Papathomas
TG
,
Suurd
DPD
,
Pacak
K
,
Tischler
AS
,
Vriens
MR
,
Lam
AK
, et al
.
What have we learned from molecular biology of paragangliomas and pheochromocytomas
.
Endocr Pathol
.
2021
;
32
(
1
):
134
53
.
34.
Toledo
R
,
Jimenez
C
.
Recent advances in the management of malignant pheochromocytoma and paraganglioma: focus on tyrosine kinase and hypoxia-inducible factor inhibitors
.
F1000Res
.
2018
;
7
:
F1000 Faculty Rev-1148
.
35.
Jimenez
C
,
Fazeli
S
,
Román-Gonzalez
A
.
Antiangiogenic therapies for pheochromocytoma and paraganglioma
.
Endocr Relat Cancer
.
2020
;
27
(
7
):
R239
54
.
36.
Wang
K
,
Schütze
I
,
Gulde
S
,
Bechmann
N
,
Richter
S
,
Helm
J
, et al
.
Personalized drug testing in human pheochromocytoma/paraganglioma primary cultures
.
Endocr Relat Cancer
.
2022
;
29
(
6
):
285
306
.
37.
Carafone
L
,
Victor
A
,
Harbuz-Miller
I
.
A SDHB variant of unknown significance in a patient with a cardiac functional paraganglioma
.
JCEM Case Rep
.
2023
;
1
(
4
):
luad093
.
38.
Ho
WJ
,
Zhu
Q
,
Durham
J
,
Popovic
A
,
Xavier
S
,
Leatherman
J
, et al
.
Neoadjuvant cabozantinib and nivolumab converts locally advanced HCC into resectable disease with enhanced antitumor immunity
.
Nat Cancer
.
2021
;
2
(
9
):
891
903
.
39.
Lee
CH
,
Voss
MH
,
Carlo
MI
,
Chen
YB
,
Zucker
M
,
Knezevic
A
, et al
.
Phase II trial of cabozantinib plus nivolumab in patients with non-clear-cell renal cell carcinoma and genomic correlates
.
J Clin Oncol
.
2022
;
40
(
21
):
2333
41
.
40.
Motzer
RJ
,
Powles
T
,
Burotto
M
,
Escudier
B
,
Bourlon
MT
,
Shah
AY
, et al
.
Nivolumab plus cabozantinib versus sunitinib in first-line treatment for advanced renal cell carcinoma (CheckMate 9ER): long-term follow-up results from an open-label, randomised, phase 3 trial
.
Lancet Oncol
.
2022
;
23
(
7
):
888
98
.
41.
Economides
MP
,
Shah
AY
,
Jimenez
C
,
Habra
MA
,
Desai
M
,
Campbell
MT
.
A durable response with the combination of nivolumab and cabozantinib in a patient with metastatic paraganglioma: a case report and review of the current literature
.
Front Endocrinol
.
2020
;
11
:
594264
.
42.
Jimenez
C
,
Habra
MA
,
Campbell
MT
,
Tamsen
G
,
Cruz-Goldberg
D
,
Long
J
, et al
.
Cabozantinib in patients with unresectable and progressive metastatic phaeochromocytoma or paraganglioma (the Natalie Trial): a single-arm, phase 2 trial
.
Lancet Oncol
.
2024
;
25
(
5
):
658
67
.
43.
Grande
E
,
Benavent Viñuales
M
,
Molina-Cerrillo
J
,
Teule
A
,
Jimenez-Fonseca
P
,
Carmona-Bayonas
A
, et al
.
Cabozantinib plus atezolizumab in locally advanced/metastatic adrenocortical carcinoma: results from a multi-cohort basket phase II trial, CABATEN/GETNE-T1914
.
J Clin Oncol
.
2024
;
42
(
4_Suppl l
):
1
.
44.
No Study Results Posted
.
Effect of cabozantinib S-malate or lenvatinib mesylate on weight and body composition in patients with metastatic endocrine cancer
.
ClinicalTrials.gov
[cited 2024 Oct 24]. Available from: https://www.clinicaltrials.gov/study/NCT02592356?tab=results
45.
Bhatia
S
,
Storer
BE
,
Iyer
JG
,
Moshiri
A
,
Parvathaneni
U
,
Byrd
D
, et al
.
Adjuvant radiation therapy and chemotherapy in merkel cell carcinoma: survival analyses of 6908 cases from the national cancer data base
.
J Natl Cancer Inst
.
2016
;
108
(
9
):
djw042
.
46.
Fojnica
A
,
Ljuca
K
,
Akhtar
S
,
Gatalica
Z
,
Vranic
S
.
An updated review of the biomarkers of response to immune checkpoint inhibitors in merkel cell carcinoma: merkel cell carcinoma and immunotherapy
.
Cancers
.
2023
;
15
(
20
):
5084
.
47.
Schmults
CD
,
Blitzblau
R
,
Aasi
SZ
,
Alam
M
,
Amini
A
,
Bibee
K
, et al
.
NCCN Guidelines® insights: merkel cell carcinoma, version 1.2024
.
J Natl Compr Canc Netw
.
2024
;
22
(
1D
):
e240002
.
48.
Haanen
J
,
Obeid
M
,
Spain
L
,
Carbonnel
F
,
Wang
Y
,
Robert
C
, et al
.
Management of toxicities from immunotherapy: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up
.
Ann Oncol
.
2022
;
33
(
12
):
1217
38
.
49.
Gide
TN
,
Wilmott
JS
,
Scolyer
RA
,
Long
GV
.
Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma
.
Clin Cancer Res
.
2018
;
24
(
6
):
1260
70
.
50.
Yakes
FM
,
Chen
J
,
Tan
J
,
Yamaguchi
K
,
Shi
Y
,
Yu
P
, et al
.
Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth
.
Mol Cancer Ther
.
2011
;
10
(
12
):
2298
308
.
51.
Kukko
H
,
Koljonen
V
,
Lassus
P
,
Tukiainen
E
,
Haglund
C
,
Bohling
T
.
Expression of vascular endothelial growth factor receptor-2 in Merkel cell carcinoma
.
Anticancer Res
.
2007
;
27
(
4C
):
2587
9
.
52.
Brunner
M
,
Thurnher
D
,
Pammer
J
,
Geleff
S
,
Heiduschka
G
,
Reinisch
CM
, et al
.
Expression of VEGF-A/C, VEGF-R2, PDGF-alpha/beta, c-kit, EGFR, her-2/neu, mcl-1 and bmi-1 in merkel cell carcinoma
.
Mod Pathol
.
2008
;
21
(
7
):
876
84
.
53.
Starrett
GJ
,
Marcelus
C
,
Cantalupo
PG
,
Katz
JP
,
Cheng
J
,
Akagi
K
, et al
.
Merkel cell polyomavirus exhibits dominant control of the tumor genome and transcriptome in virus-associated merkel cell carcinoma
.
mBio
.
2017
;
8
(
1
):
e02079-16
.
54.
Karpinski
P
,
Rosales
I
,
Laczmanski
L
,
Kowalik
A
,
Wenson
S
,
Hoang
MP
.
Expression of genes associated with epithelial-mesenchymal transition in merkel cell polyomavirus-negative merkel cell carcinoma
.
Lab Invest
.
2023
;
103
(
8
):
100177
.
55.
Dong
HY
,
Liu
W
,
Cohen
P
,
Mahle
CE
,
Zhang
W
.
B-cell specific activation protein encoded by the PAX-5 gene is commonly expressed in merkel cell carcinoma and small cell carcinomas
.
Am J Surg Pathol
.
2005
;
29
(
5
):
687
92
.
56.
Tarabadkar
ES
,
Thomas
H
,
Blom
A
,
Parvathaneni
U
,
Olencki
T
,
Nghiem
P
, et al
.
Clinical benefit from tyrosine kinase inhibitors in metastatic merkel cell carcinoma: a case series of 5 patients
.
Am J Case Rep
.
2018
;
19
:
505
11
.
57.
Rabinowits
G
,
Lezcano
C
,
Catalano
PJ
,
McHugh
P
,
Becker
H
,
Reilly
MM
, et al
.
Cabozantinib in patients with advanced merkel cell carcinoma
.
Oncologist
.
2018
;
23
(
7
):
814
21
.
58.
Zago
E
,
Galluzzo
A
,
Pradella
S
,
Antonuzzo
L
,
Maggi
M
,
Petrone
L
, et al
.
Cabozantinib for different endocrine tumours: killing two birds with one stone. A systematic review of the literature
.
Endocrine
.
2024
;
83
(
1
):
26
40
.
59.
Matrood
S
,
Apostolidis
L
,
Schrader
J
,
Krug
S
,
Lahner
H
,
Ramaswamy
A
, et al
.
Multicenter analysis of presacral neuroendocrine neoplasms—clinicopathological characterization and treatment outcomes of a rare disease
.
Front Endocrinol
.
2021
;
12
(
12
):
709256
.
60.
Veleno
M
,
Giampietro
A
,
Raia
S
,
Menotti
S
,
Tartaglione
T
,
Gaudino
S
, et al
.
Clinical implications of the 2022 WHO classification on the multidisciplinary management of PitNETS patients
.
Minerva Endocrinol
.
2024
;
49
(
3
):
269
82
.
61.
Asioli
S
,
Guaraldi
F
,
Zoli
M
,
Mazzatenta
D
,
Villa
C
.
How to standardize the diagnostic approach to pituitary neuroendocrine tumors
.
Minerva Endocrinol
.
2024
;
49
(
3
):
283
92
.
62.
DE Alcubierre
D
,
Carretti
AL
,
Ducray
F
,
Jouanneau
E
,
Raverot
G
,
Ilie
MD
.
Aggressive pituitary tumors and carcinomas: medical treatment beyond temozolomide
.
Minerva Endocrinol
.
2024
;
49
(
3
):
321
34
.
63.
Marques
P
,
Barry
S
,
Carlsen
E
,
Collier
D
,
Ronaldson
A
,
Dorward
N
, et al
.
The role of the tumour microenvironment in the angiogenesis of pituitary tumours
.
Endocrine
.
2020
;
70
(
3
):
593
606
.
64.
Zhou
J
,
Hu
Y
,
Zhu
W
,
Nie
C
,
Zhao
W
,
Faje
AT
, et al
.
Sprouting angiogenesis in human pituitary adenomas
.
Front Oncol
.
2022
;
12
(
April
):
875219
8
.
65.
Klöppel
G
.
Neuroendocrine neoplasms: dichotomy, origin and classifications
.
Visc Med
.
2017
;
33
(
5
):
324
30
.
66.
Marker
PC
,
Donjacour
AA
,
Dahiya
R
,
Cunha
GR
.
Hormonal, cellular, and molecular control of prostatic development
.
Dev Biol
.
2003
;
253
(
2
):
165
74
.
67.
Beltran
H
,
Prandi
D
,
Mosquera
JM
,
Benelli
M
,
Puca
L
,
Cyrta
J
, et al
.
Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer
.
Nat Med
.
2016
;
22
(
3
):
298
305
.
68.
Kaarijärvi
R
,
Kaljunen
H
,
Nappi
L
,
Fazli
L
,
Kung
SHY
,
Hartikainen
JM
, et al
.
DPYSL5 is highly expressed in treatment-induced neuroendocrine prostate cancer and promotes lineage plasticity via EZH2/PRC2
.
Commun Biol
.
2024
;
7
(
1
):
108
.
69.
Surintrspanont
J
,
Zhou
M
.
Prostate pathology: what is new in the 2022 WHO classification of urinary and male genital tumors
.
Pathologica
.
2022
;
115
(
1
):
41
56
.
70.
Fujimoto
N
,
Tsubonuma
Y
,
Nagata
Y
,
Minato
A
,
Tomisaki
I
,
Harada
K
, et al
.
Second-line systemic therapy for highly aggressive neuroendocrine prostate cancer
.
Anticancer Res
.
2023
;
43
(
9
):
3841
7
.
71.
Drake
JM
,
Graham
NA
,
Lee
JK
,
Stoyanova
T
,
Faltermeier
CM
,
Sud
S
, et al
.
Metastatic castration-resistant prostate cancer reveals intrapatient similarity and interpatient heterogeneity of therapeutic kinase targets
.
Proc Natl Acad Sci USA
.
2013
;
110
(
49
):
E4762
9
.
72.
Zamora
I
,
Freeman
MR
,
Encío
IJ
,
Rotinen
M
.
Targeting key players of neuroendocrine differentiation in prostate cancer
.
Int J Mol Sci
.
2023
;
24
(
18
):
13673
.
73.
Guo
CC
,
Czerniak
B
.
Updates of prostate cancer from the 2022 world health organization classification of the urinary and male genital tumors
.
J Clin Transl Pathol
.
2023
;
3
(
1
):
26
34
.
74.
Santoni
M
,
Conti
A
,
Burattini
L
,
Berardi
R
,
Scarpelli
M
,
Cheng
L
, et al
.
Neuroendocrine differentiation in prostate cancer: novel morphological insights and future therapeutic perspectives
.
Biochim Biophys Acta
.
2014
;
1846
(
2
):
630
7
.
75.
Franceschini
GM
,
Quaini
O
,
Mizuno
K
,
Orlando
F
,
Ciani
Y
,
Ku
S-Y
, et al
.
Noninvasive detection of neuroendocrine prostate cancer through targeted cell-free DNA methylation
.
Cancer Discov
.
2024
;
14
(
3
):
424
45
.
76.
Zhang
C
,
Qian
J
,
Wu
Y
,
Zhu
Z
,
Yu
W
,
Gong
Y
, et al
.
Identification of novel diagnosis biomarkers for therapy-related neuroendocrine prostate cancer
.
Pathol Oncol Res
.
2021
;
27
:
1609968
.
77.
Smith
DC
,
Smith
MR
,
Sweeney
C
,
Elfiky
AA
,
Logothetis
C
,
Corn
PG
, et al
.
Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial
.
J Clin Oncol
.
2013
;
31
(
4
):
412
9
.
78.
Labrecque
MP
,
Brown
LG
,
Coleman
IM
,
Nguyen
HM
,
Lin
DW
,
Corey
E
, et al
.
Cabozantinib can block growth of neuroendocrine prostate cancer patient-derived xenografts by disrupting tumor vasculature
.
PLoS One
.
2021
;
16
:
e0245602
.
79.
Smith
M
,
De Bono
J
,
Sternberg
C
,
Le Moulec
S
,
Oudard
S
,
De Giorgi
U
, et al
.
Phase III study of cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1
.
J Clin Oncol
.
2016
;
34
(
25
):
3005
13
.
80.
Basch
EM
,
Scholz
M
,
de Bono
JS
,
Vogelzang
N
,
de Souza
P
,
Marx
G
, et al
.
Cabozantinib versus mitoxantrone-prednisone in symptomatic metastatic castration-resistant prostate cancer: a randomized phase 3 trial with a primary pain endpoint
.
Eur Urol
.
2019
;
75
(
6
):
929
37
.
81.
Sonpavde
GP
,
Pond
GR
,
Fizazi
K
,
de Bono
JS
,
Basch
EM
,
Scher
HI
, et al
.
Cabozantinib for progressive metastatic castration-resistant prostate cancer following docetaxel: combined analysis of two phase 3 trials
.
Eur Urol Oncol
.
2020
;
3
(
4
):
540
3
.
82.
Cabozantinib in Patients With Metastatic Castrate Resistant Prostate Cancer (mCRPC)
.
ClinicalTrials.gov
[cited 2024 Oct 24]. Available from: https://clinicaltrials.gov/study/NCT04631744
83.
Agarwal
N
,
Azad
A
,
Carles
J
,
Chowdhury
S
,
Mcgregor
B
,
Merseburger
AS
, et al
.
A phase III, randomized, open-label study (CONTACT-02) of cabozantinib plus atezolizumab versus second novel hormone therapy in patients with metastatic castration-resistant prostate cancer
.
Futur Oncol
.
2022
;
18
(
10
):
1185
98
.
84.
Agarwal
N
,
Azad
A
,
Carles
J
,
Matsubara
N
,
Oudard
S
,
Saad
F
, et al
.
CONTACT-02: phase 3 study of cabozantinib (C) plus atezolizumab (A) vs second novel hormonal therapy (NHT) in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC)
.
J Clin Oncol
.
2024
;
42
(
4_Suppl l
):
18
.
85.
Annex 1 summary of product characteristics
[cited 2024 Oct 24]. Available from: https://www.ema.europa.eu/en/documents/product-information/cabometyx-epar-product-information_en.pdf
86.
Modlin
IM
,
Lye
KD
,
Kidd
M
.
A 5-decade analysis of 13,715 carcinoid tumors
.
Cancer
.
2003
;
97
(
4
):
934
59
.
87.
Powles
T
,
Burotto
M
,
Escudier
B
,
Apolo
AB
,
Bourlon
MT
,
Shah
AY
, et al
.
Nivolumab plus cabozantinib versus sunitinib for first-line treatment of advanced renal cell carcinoma: extended follow-up from the phase III randomised CheckMate 9ER trial
.
ESMO Open
.
2024
;
9
(
5
):
102994
.
88.
Zanger
UM
,
Schwab
M
.
Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation
.
Pharmacol Ther
.
2013
;
138
(
1
):
103
41
.
89.
Garcia-Torralba
E
,
Spada
F
,
Lim
KHJ
,
Jacobs
T
,
Barriuso
J
,
Mansoor
W
, et al
.
Knowns and unknowns of bone metastases in patients with neuroendocrine neoplasms: a systematic review and meta-analysis
.
Cancer Treat Rev
.
2021
;
94
:
102168
.
90.
Preissner
SC
,
Hoffmann
MF
,
Preissner
R
,
Dunkel
M
,
Gewiess
A
,
Preissner
S
.
Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy
.
PLoS One
.
2013
;
8
(
12
):
e82562
.
91.
Lin
QM
,
Li
YH
,
Lu
XR
,
Wang
R
,
Pang
NH
,
Xu
RA
, et al
.
Characterization of genetic variation in CYP3A4 on the metabolism of cabozantinib in vitro
.
Chem Res Toxicol
.
2019
;
32
(
8
):
1583
90
.
92.
García-Donas
J
,
Beuselinck
B
,
Inglada-Pérez
L
,
Graña
O
,
Schöffski
P
,
Wozniak
A
, et al
.
Deep sequencing reveals microRNAs predictive of antiangiogenic drug response
.
JCI Insight
.
2016
;
1
(
10
):
e86051
.
93.
Mukry
SN
,
Shahni
A
,
Zaidi
U
,
Shamsi
TS
.
Cytochromes P450 and glutathione S-transferases polymorphisms: can they predict efficacy of tyrosine kinase inhibitors in chronic myeloid leukemia
.
Blood
.
2019
;
134
(
Suppl ment_1
):
5920
.
94.
Diekstra
MHM
,
Klümpen
HJ
,
Lolkema
MPJK
,
Yu
H
,
Kloth
JSL
,
Gelderblom
H
, et al
.
Association analysis of genetic polymorphisms in genes related to sunitinib pharmacokinetics, specifically clearance of sunitinib and SU12662
.
Clin Pharmacol Ther
.
2014
;
96
(
1
):
81
9
.
You do not currently have access to this content.