Introduction: Small cell neuroendocrine carcinoma of the cervix (SCNECC) is a rare gynecologic malignant tumor, which has lack of systematic research. In order to investigate its molecular characteristics, origin, and pathogenesis, single-cell transcriptome sequencing (scRNA-Seq) of SCNECC was performed for the first time, the cellular and molecular landscape was revealed, and the key genes for clinical prognosis were screened. Methods: This article initially performed the scRNA-Seq on a tumor tissue sample from an SCNECC patient, combined with scRNA-Seq data from a healthy cervical tissue sample downloaded from a public database; the single-cell transcriptome landscape was constructed. Then, we investigated the cell types, intratumoral heterogeneity, characteristics of tumor microenvironment, and potential predictive markers of SCNECC. Results: We identified two malignant cell populations, tumor stem cells and malignant carcinoma cells, and revealed two tumor progression pathways of SCNECC. By analyzing gene expression levels in the pathophysiology of SCNECC, we found that the expression levels of ERBB4 and NRG1, as well as the expression profile of mTOR signaling pathway mediated by them, were significantly upregulated in malignant carcinoma cells. In addition, we also found that carcinoma cells were able to stimulate malignant cell proliferation through the FN1 signaling pathway. The immune cells were in a stress state, with T-cell depletion, macrophage polarization, and mast cell glycolysis. These results suggested that carcinoma cells could interfere with immune response and promote tumor escape through MIF, TGFb, and other immunosuppressive-related signaling pathways. Conclusion: This study revealed the mechanism of genesis and progression in SCNECC and the related important signaling pathways, such as mTOR, and provided new insights into the treatment of SCNECC.

1.
Vu
M
,
Yu
J
,
Awolude
OA
,
Chuang
L
.
Cervical cancer worldwide
.
Curr Probl Cancer
.
2018
;
42
(
5
):
457
65
.
2.
Schubert
M
,
Bauerschlag
DO
,
Muallem
MZ
,
Maass
N
,
Alkatout
I
.
Challenges in the diagnosis and individualized treatment of cervical cancer
.
Medicina
.
2023
;
59
(
5
):
925
.
3.
Burd
EM
.
Human papillomavirus and cervical cancer
.
Clin Microbiol Rev
.
2003
;
16
(
1
):
1
17
.
4.
Moody
CA
,
Laimins
LA
.
Human papillomavirus oncoproteins: pathways to transformation
.
Nat Rev Cancer
.
2010
;
10
(
8
):
550
60
.
5.
Stryker
ZI
,
Rajabi
M
,
Davis
PJ
,
Mousa
SA
.
Evaluation of angiogenesis assays
.
Biomedicines
.
2019
;
7
(
2
):
37
.
6.
Minion
LE
,
Tewari
KS
.
Cervical cancer–state of the science: from angiogenesis blockade to checkpoint inhibition
.
Gynecol Oncol
.
2018
;
148
(
3
):
609
21
.
7.
Cohen
PA
,
Jhingran
A
,
Oaknin
A
,
Denny
L
.
Cervical cancer
.
Lancet
.
2019
;
393
(
10167
):
169
82
.
8.
Salvo
G
,
Gonzalez Martin
A
,
Gonzales
NR
,
Frumovitz
M
.
Updates and management algorithm for neuroendocrine tumors of the uterine cervix
.
Int J Gynecol Cancer
.
2019
;
29
(
6
):
986
95
.
9.
Kurman
RJ
,
Carcangiu
ML
,
Herrington
CS
,
Young
RH
, editors.
WHO classification of tumors of female reproductive organs
. 4th ed.
World Health Organisation
;
2014
.
10.
Castle
PE
,
Pierz
A
,
Stoler
MH
.
A systematic review and meta-analysis on the attribution of human papillomavirus (HPV) in neuroendocrine cancers of the cervix
.
Gynecol Oncol
.
2018
;
148
(
2
):
422
9
.
11.
Wang
HL
,
Lu
DW
.
Detection of human papillomavirus DNA and expression of p16, Rb, and p53 proteins in small cell carcinomas of the uterine cervix
.
Am J Surg Pathol
.
2004
;
28
(
7
):
901
8
.
12.
Alejo
M
,
Alemany
L
,
Clavero
O
,
Quiros
B
,
Vighi
S
,
Seoud
M
, et al
.
Contribution of Human papillomavirus in neuroendocrine tumors from a series of 10,575 invasive cervical cancer cases
.
Papillomavirus Res
.
2018
;
5
:
134
42
.
13.
Pei
X
,
Xiang
L
,
Chen
W
,
Jiang
W
,
Yin
L
,
Shen
X
, et al
.
The next generation sequencing of cancer-related genes in small cell neuroendocrine carcinoma of the cervix
.
Gynecol Oncol
.
2021
;
161
(
3
):
779
86
.
14.
Chao
A
,
Wu
RC
,
Lin
CY
,
Chang
TC
,
Lai
CH
.
Small cell neuroendocrine carcinoma of the cervix: from molecular basis to therapeutic advances
.
Biomed J
.
2023
;
46
(
5
):
100633
.
15.
Cho
SY
,
Choi
M
,
Ban
HJ
,
Lee
CH
,
Park
S
,
Kim
H
, et al
.
Cervical small cell neuroendocrine tumor mutation profiles via whole exome sequencing
.
Oncotarget
.
2017
;
8
(
5
):
8095
104
.
16.
Roskoski
R
Jr
.
The ErbB/HER family of protein-tyrosine kinases and cancer
.
Pharmacol Res
.
2014
;
79
:
34
74
.
17.
Tvorogov
D
,
Sundvall
M
,
Kurppa
K
,
Hollmén
M
,
Repo
S
,
Johnson
MS
, et al
.
Somatic mutations of ErbB4: selective loss-of-function phenotype affecting signal transduction pathways in cancer
.
J Biol Chem
.
2009
;
284
(
9
):
5582
91
.
18.
Hu
S
,
Fei
Y
,
Jin
C
,
Yao
J
,
Ding
H
,
Wang
J
, et al
.
Ginsenoside Rd enhances blood-brain barrier integrity after cerebral ischemia/reperfusion by alleviating endothelial cells ferroptosis via activation of NRG1/ErbB4-mediated PI3K/Akt/mTOR signaling pathway
.
Neuropharmacology
.
2024
;
251
:
109929
.
19.
Chan
J
,
Kulke
M
.
Targeting the mTOR signaling pathway in neuroendocrine tumors
.
Curr Treat Options Oncol
.
2014
;
15
(
3
):
365
79
.
20.
Wong
V
,
Abreu-Diaz
M
,
Kaur
M
,
El-Hosseiny
S
.
Shoulder and upper back pain: an unusual initial presentation of rare stage IV small cell neuroendocrine cervical cancer
.
Cureus
.
2022
;
14
(
2
):
e22708
.
21.
Wang
Y
,
Deng
B
.
Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers
.
Cancer Metastasis Rev
.
2023
;
42
(
3
):
629
52
.
22.
Lei
Y
,
Tang
R
,
Xu
J
,
Wang
W
,
Zhang
B
,
Liu
J
, et al
.
Applications of single-cell sequencing in cancer research: progress and perspectives
.
J Hematol Oncol
.
2021
;
14
(
1
):
91
.
23.
Jovic
D
,
Liang
X
,
Zeng
H
,
Lin
L
,
Xu
F
,
Luo
Y
.
Single-cell RNA sequencing technologies and applications: a brief overview
.
Clin Transl Med
.
2022
;
12
(
3
):
e694
.
24.
Papalexi
E
,
Satija
R
.
Single-cell RNA sequencing to explore immune cell heterogeneity
.
Nat Rev Immunol
.
2018
;
18
(
1
):
35
45
.
25.
Zhang
Y
,
Wang
D
,
Peng
M
,
Tang
L
,
Ouyang
J
,
Xiong
F
, et al
.
Single-cell RNA sequencing in cancer research
.
J Exp Clin Cancer Res
.
2021
;
40
(
1
):
81
.
26.
Yue
S
,
Wang
Q
,
Zhang
J
,
Hu
Q
,
Liu
C
.
Understanding cervical cancer at single-cell resolution
.
Cancer Lett
.
2023
;
576
:
216408
.
27.
Wang
X
,
Li
J
,
Li
Y
,
Lv
M
,
Dong
X
,
Fan
Z
, et al
.
Single-cell analysis of the cellular landscape of vulvar melanoma provides new insight for immunotherapy administration
.
BMC cancer
.
2024
;
24
(
1
):
101
.
28.
Zhou
Y
,
Yang
D
,
Yang
Q
,
Lv
X
,
Huang
W
,
Zhou
Z
, et al
.
Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma
.
Nat Commun
.
2020
;
11
(
1
):
6322
.
29.
Li
C
,
Guo
L
,
Li
S
,
Hua
K
.
Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and transcriptional activities of ECs in CC
.
Mol Ther Nucleic Acids
.
2021
;
24
:
682
94
.
30.
Li
C
,
Wu
H
,
Guo
L
,
Liu
D
,
Yang
S
,
Li
S
, et al
.
Single-cell transcriptomics reveals cellular heterogeneity and molecular stratification of cervical cancer
.
Commun Biol
.
2022
;
5
(
1
):
1208
.
31.
Li
C
,
Liu
D
,
Zhao
Y
,
Ding
Y
,
Hua
K
.
Diverse intratumoral heterogeneity and immune microenvironment of two HPV-related cervical cancer types revealed by single-cell RNA sequencing
.
J Med Virol
.
2023
;
95
(
6
):
e28857
.
32.
Wei
E
,
Reisinger
A
,
Li
J
,
French
LE
,
Clanner-Engelshofen
B
,
Reinholz
M
.
Integration of scRNA-seq and TCGA RNA-seq to analyze the heterogeneity of HPV+ and HPV- cervical cancer immune cells and establish molecular risk models
.
Front Oncol
.
2022
;
12
:
860900
.
33.
Guo
C
,
Qu
X
,
Tang
X
,
Song
Y
,
Wang
J
,
Hua
K
, et al
.
Spatiotemporally deciphering the mysterious mechanism of persistent HPV-induced malignant transition and immune remodelling from HPV-infected normal cervix, precancer to cervical cancer: integrating single-cell RNA-sequencing and spatial transcriptome
.
Clin Transl Med
.
2023
;
13
(
3
):
e1219
.
34.
Gulati
GS
,
Sikandar
SS
,
Wesche
DJ
,
Manjunath
A
,
Bharadwaj
A
,
Berger
MJ
, et al
.
Single-cell transcriptional diversity is a hallmark of developmental potential
.
Science
.
2020
;
367
(
6476
):
405
11
.
35.
Cao
J
,
Spielmann
M
,
Qiu
X
,
Huang
X
,
Ibrahim
DM
,
Hill
AJ
, et al
.
The single-cell transcriptional landscape of mammalian organogenesis
.
Nature
.
2019
;
566
(
7745
):
496
502
.
36.
Austin
PC
,
Lee
DS
,
Fine
JP
.
Introduction to the analysis of survival data in the presence of competing risks
.
Circulation
.
2016
;
133
(
6
):
601
9
.
37.
Hu
C
,
Li
T
,
Xu
Y
,
Zhang
X
,
Li
F
,
Bai
J
, et al
.
CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data
.
Nucleic Acids Res
.
2023
;
51
(
D1
):
D870
6
.
38.
Franzén
O
,
Gan
LM
,
Björkegren
JLM
.
PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data
.
Database
.
2019
;
2019
:
baz046
.
39.
Haber
AL
,
Biton
M
,
Rogel
N
,
Herbst
RH
,
Shekhar
K
,
Smillie
C
, et al
.
A single-cell survey of the small intestinal epithelium
.
Nature
.
2017
;
551
(
7680
):
333
9
.
40.
Gires
O
,
Pan
M
,
Schinke
H
,
Canis
M
,
Baeuerle
PA
.
Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years
.
Cancer Metastasis Rev
.
2020
;
39
(
3
):
969
87
.
41.
Lee
KW
,
Sung
CO
,
Kim
JH
,
Kang
M
,
Yoo
HY
,
Kim
HH
, et al
.
CD10 expression is enhanced by Twist1 and associated with poor prognosis in esophageal squamous cell carcinoma with facilitating tumorigenicity in vitro and in vivo
.
Int J Cancer
.
2015
;
136
(
2
):
310
21
.
42.
Jiang
L
,
Lin
L
,
Li
R
,
Yuan
C
,
Xu
M
,
Huang
JH
, et al
.
Dimer conformation of soluble PECAM-1, an endothelial marker
.
Int J Biochem Cell Biol
.
2016
;
77
(
Pt A
):
102
8
.
43.
Huang
R
,
Yu
L
,
Zheng
C
,
Liang
Q
,
Suye
S
,
Yang
X
, et al
.
Diagnostic value of four neuroendocrine markers in small cell neuroendocrine carcinomas of the cervix: a meta-analysis
.
Sci Rep
.
2020
;
10
(
1
):
14975
.
44.
Aizawa
S
,
Yamamuro
Y
.
Possible involvement of DNA methylation in hippocampal synaptophysin gene expression during postnatal development of mice
.
Neurochem Int
.
2020
;
132
:
104587
.
45.
Barker
N
,
van Es
JH
,
Kuipers
J
,
Kujala
P
,
van den Born
M
,
Cozijnsen
M
, et al
.
Identification of stem cells in small intestine and colon by marker gene Lgr5
.
Nature
.
2007
;
449
(
7165
):
1003
7
.
46.
Choi
J
,
Oh
TG
,
Jung
HW
,
Park
KY
,
Shin
H
,
Jo
T
, et al
.
Estrogen-related receptor γ maintains pancreatic acinar cell function and identity by regulating cellular metabolism
.
Gastroenterology
.
2022
;
163
(
1
):
239
56
.
47.
Ratsada
P
,
Hijiya
N
,
Hidano
S
,
Tsukamoto
Y
,
Nakada
C
,
Uchida
T
, et al
.
DUSP4 is involved in the enhanced proliferation and survival of DUSP4-overexpressing cancer cells
.
Biochem Biophys Res Commun
.
2020
;
528
(
3
):
586
93
.
48.
Tabasum
S
,
Thapa
D
,
Giobbie-Hurder
A
,
Weirather
JL
,
Campisi
M
,
Schol
PJ
, et al
.
EDIL3 as an angiogenic target of immune exclusion following checkpoint blockade
.
Cancer Immunol Res
.
2023
;
11
(
11
):
1493
507
.
49.
Jia
YY
,
Yu
Y
,
Li
HJ
.
POSTN promotes proliferation and epithelial-mesenchymal transition in renal cell carcinoma through ILK/AKT/mTOR pathway
.
J Cancer
.
2021
;
12
(
14
):
4183
95
.
50.
Cui
H
,
Zhang
L
,
Chen
B
,
Zhang
F
,
Xu
H
,
Ma
G
, et al
.
TNFAIP6 promotes gastric carcinoma cell invasion via upregulating PTX3 and activating the wnt/β-catenin signaling pathway
.
Contrast Media Mol Imaging
.
2022
;
2022
:
5697034
.
51.
Tang
H
,
Chen
J
,
Han
X
,
Feng
Y
,
Wang
F
.
Upregulation of SPP1 is a marker for poor lung cancer prognosis and contributes to cancer progression and cisplatin resistance
.
Front Cell Dev Biol
.
2021
;
9
:
646390
.
52.
Angenendt
L
,
Bormann
E
,
Pabst
C
,
Alla
V
,
Görlich
D
,
Braun
L
, et al
.
The neuropeptide receptor calcitonin receptor-like (CALCRL) is a potential therapeutic target in acute myeloid leukemia
.
Leukemia
.
2019
;
33
(
12
):
2830
41
.
53.
Staquicini
FI
,
Qian
MD
,
Salameh
A
,
Dobroff
AS
,
Edwards
JK
,
Cimino
DF
, et al
.
Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer
.
J Biol Chem
.
2015
;
290
(
12
):
7345
59
.
54.
Novak
D
,
Hüser
L
,
Elton
JJ
,
Umansky
V
,
Altevogt
P
,
Utikal
J
.
SOX2 in development and cancer biology
.
Semin Cancer Biol
.
2020
;
67
(
Pt 1
):
74
82
.
55.
Tuysuz
EC
,
Mourati
E
,
Rosberg
R
,
Moskal
A
,
Gialeli
C
,
Johansson
E
, et al
.
Tumor suppressor role of the complement inhibitor CSMD1 and its role in TNF-induced neuroinflammation in gliomas
.
J Exp Clin Cancer Res
.
2024
;
43
(
1
):
98
.
56.
Zhang
H
,
Xu
C
,
Shi
C
,
Zhang
J
,
Qian
T
,
Wang
Z
, et al
.
Hypermethylation of heparanase 2 promotes colorectal cancer proliferation and is associated with poor prognosis
.
J Transl Med
.
2021
;
19
(
1
):
98
.
57.
Kim
HR
,
Lee
T
,
Choi
JK
,
Jeong
Y
;
Alzheimer’s Disease Neuroimaging Initiative
.
Polymorphism in the MAGI2 gene modifies the effect of amyloid β on neurodegeneration
.
Alzheimer Dis Assoc Disord
.
2021
;
35
(
2
):
114
20
.
58.
Sakazume
S
,
Kido
Y
,
Murakami
N
,
Matsubara
T
,
Numabe
H
.
Additional patients with 4q deletion: severe growth delay and polycystic kidney disease associated with 4q21q22 loss
.
Pediatr Int
.
2015
;
57
(
5
):
880
3
.
59.
Park
MK
,
Zhang
L
,
Min
KW
,
Cho
JH
,
Yeh
CC
,
Moon
H
, et al
.
NEAT1 is essential for metabolic changes that promote breast cancer growth and metastasis
.
Cell Metab
.
2021
;
33
(
12
):
2380
97.e9
.
60.
Tocci
S
,
Ibeawuchi
SR
,
Das
S
,
Sayed
IM
.
Role of ELMO1 in inflammation and cancer-clinical implications
.
Cell Oncol
.
2022
;
45
(
4
):
505
25
.
61.
Michibata
H
,
Okuno
T
,
Konishi
N
,
Kyono
K
,
Wakimoto
K
,
Aoki
K
, et al
.
Human GPM6A is associated with differentiation and neuronal migration of neurons derived from human embryonic stem cells
.
Stem Cells Dev
.
2009
;
18
(
4
):
629
39
.
62.
Liu
Y
,
Kors
L
,
Butter
LM
,
Stokman
G
,
Claessen
N
,
Zuurbier
CJ
, et al
.
NLRX1 prevents M2 macrophage polarization and excessive renal fibrosis in chronic obstructive nephropathy
.
Cells
.
2023
;
13
(
1
):
23
.
63.
Kuninaka
Y
,
Ishida
Y
,
Ishigami
A
,
Nosaka
M
,
Matsuki
J
,
Yasuda
H
, et al
.
Macrophage polarity and wound age determination
.
Sci Rep
.
2022
;
12
(
1
):
20327
.
64.
Reina-Campos
M
,
Scharping
NE
,
Goldrath
AW
.
CD8(+) T cell metabolism in infection and cancer
.
Nat Rev Immunol
.
2021
;
21
(
11
):
718
38
.
65.
Blank
CU
,
Haining
WN
,
Held
W
,
Hogan
PG
,
Kallies
A
,
Lugli
E
, et al
.
Defining “T cell exhaustion”
.
Nat Rev Immunol
.
2019
;
19
(
11
):
665
74
.
66.
Rozpedek
W
,
Pytel
D
,
Mucha
B
,
Leszczynska
H
,
Diehl
JA
,
Majsterek
I
.
The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress
.
Curr Mol Med
.
2016
;
16
(
6
):
533
44
.
67.
Apostolova
P
,
Pearce
EL
.
Lactic acid and lactate: revisiting the physiological roles in the tumor microenvironment
.
Trends Immunol
.
2022
;
43
(
12
):
969
77
.
68.
Lian
X
,
Yang
K
,
Li
R
,
Li
M
,
Zuo
J
,
Zheng
B
, et al
.
Immunometabolic rewiring in tumorigenesis and anti-tumor immunotherapy
.
Mol Cancer
.
2022
;
21
(
1
):
27
.
69.
Schwarzbauer
JE
,
DeSimone
DW
.
Fibronectins, their fibrillogenesis, and in vivo functions
.
Cold Spring Harb Perspect Biol
.
2011
;
3
(
7
):
a005041
.
70.
Zhou
Z
,
Wang
H
,
Zhang
X
,
Song
M
,
Yao
S
,
Jiang
P
, et al
.
Defective autophagy contributes to endometrial epithelial-mesenchymal transition in intrauterine adhesions
.
Autophagy
.
2022
;
18
(
10
):
2427
42
.
71.
Zhao
X
,
Hu
J
,
Li
Y
,
Guo
M
.
Volumetric compression develops noise-driven single-cell heterogeneity
.
Proc Natl Acad Sci USA
.
2021
;
118
(
51
):
e2110550118
.
72.
Lien
HC
,
Lee
YH
,
Juang
YL
,
Lu
YT
.
Fibrillin-1, a novel TGF-beta-induced factor, is preferentially expressed in metaplastic carcinoma with spindle sarcomatous metaplasia
.
Pathology
.
2019
;
51
(
4
):
375
83
.
73.
Wei
M
,
Zhang
C
,
Tian
Y
,
Du
X
,
Wang
Q
,
Zhao
H
.
Expression and function of WNT6: from development to disease
.
Front Cell Dev Biol
.
2020
;
8
:
558155
.
74.
Suthon
S
,
Perkins
RS
,
Bryja
V
,
Miranda-Carboni
GA
,
Krum
SA
.
WNT5B in physiology and disease
.
Front Cell Dev Biol
.
2021
;
9
:
667581
.
75.
Yan
L
,
Wu
M
,
Wang
T
,
Yuan
H
,
Zhang
X
,
Zhang
H
, et al
.
Breast cancer stem cells secrete MIF to mediate tumor metabolic reprogramming that drives immune evasion
.
Cancer Res
.
2024
;
84
(
8
):
1270
85
.
76.
Tauriello
DVF
,
Palomo-Ponce
S
,
Stork
D
,
Berenguer-Llergo
A
,
Badia-Ramentol
J
,
Iglesias
M
, et al
.
TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis
.
Nature
.
2018
;
554
(
7693
):
538
43
.
77.
Tsai
M
,
Valent
P
,
Galli
SJ
.
KIT as a master regulator of the mast cell lineage
.
J Allergy Clin Immunol
.
2022
;
149
(
6
):
1845
54
.
78.
Lu
J
,
Li
Y
,
Wang
J
.
Small cell (neuroendocrine) carcinoma of the cervix: an analysis for 19 cases and literature review
.
Front Cell Infect Microbiol
.
2022
;
12
:
916506
.
79.
Zivanovic
O
,
Leitao
MM
Jr
,
Park
KJ
,
Zhao
H
,
Diaz
JP
,
Konner
J
, et al
.
Small cell neuroendocrine carcinoma of the cervix: analysis of outcome, recurrence pattern and the impact of platinum-based combination chemotherapy
.
Gynecol Oncol
.
2009
;
112
(
3
):
590
3
.
80.
Lee
SW
,
Lim
KT
,
Bae
DS
,
Park
SY
,
Kim
YT
,
Kim
KR
, et al
.
A multicenter study of the importance of systemic chemotherapy for patients with small-cell neuroendocrine carcinoma of the uterine cervix
.
Gynecol Obstet Invest
.
2015
;
79
(
3
):
172
8
.
81.
Chen
X
,
Song
E
.
The theory of tumor ecosystem
.
Cancer Commun
.
2022
;
42
(
7
):
587
608
.
82.
Zhong
Q
,
Lu
M
,
Yuan
W
,
Cui
Y
,
Ouyang
H
,
Fan
Y
, et al
.
Eight-lncRNA signature of cervical cancer were identified by integrating DNA methylation, copy number variation and transcriptome data
.
J Transl Med
.
2021
;
19
(
1
):
58
.
83.
Laplante
M
,
Sabatini
DM
.
mTOR signaling in growth control and disease
.
Cell
.
2012
;
149
(
2
):
274
93
.
84.
Glaviano
A
,
Foo
ASC
,
Lam
HY
,
Yap
KCH
,
Jacot
W
,
Jones
RH
, et al
.
PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer
.
Mol Cancer
.
2023
;
22
(
1
):
138
.
85.
Ediriweera
MK
,
Tennekoon
KH
,
Samarakoon
SR
.
Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: biological and therapeutic significance
.
Semin Cancer Biol
.
2019
;
59
:
147
60
.
86.
Missiaglia
E
,
Dalai
I
,
Barbi
S
,
Beghelli
S
,
Falconi
M
,
della Peruta
M
, et al
.
Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway
.
J Clin Oncol
.
2010
;
28
(
2
):
245
55
.
87.
Kasajima
A
,
Pavel
M
,
Darb-Esfahani
S
,
Noske
A
,
Stenzinger
A
,
Sasano
H
, et al
.
mTOR expression and activity patterns in gastroenteropancreatic neuroendocrine tumours
.
Endocr Relat Cancer
.
2011
;
18
(
1
):
181
92
.
88.
Qian
ZR
,
Ter-Minassian
M
,
Chan
JA
,
Imamura
Y
,
Hooshmand
SM
,
Kuchiba
A
, et al
.
Prognostic significance of MTOR pathway component expression in neuroendocrine tumors
.
J Clin Oncol
.
2013
;
31
(
27
):
3418
25
.
89.
Hinohara
K
,
Polyak
K
.
Intratumoral heterogeneity: more than just mutations
.
Trends Cell Biol
.
2019
;
29
(
7
):
569
79
.
90.
Lobo
NA
,
Shimono
Y
,
Qian
D
,
Clarke
MF
.
The biology of cancer stem cells
.
Annu Rev Cell Dev Biol
.
2007
;
23
:
675
99
.
91.
Bejarano
L
,
Jordāo
MJC
,
Joyce
JA
.
Therapeutic targeting of the tumor microenvironment
.
Cancer Discov
.
2021
;
11
(
4
):
933
59
.
92.
Gao
W
,
Liu
Y
,
Qin
R
,
Liu
D
,
Feng
Q
.
Silence of fibronectin 1 increases cisplatin sensitivity of non-small cell lung cancer cell line
.
Biochem Biophys Res Commun
.
2016
;
476
(
1
):
35
41
.
93.
Zhang
H
,
Sun
Z
,
Li
Y
,
Fan
D
,
Jiang
H
.
MicroRNA-200c binding to FN1 suppresses the proliferation, migration and invasion of gastric cancer cells
.
Biomed Pharmacother
.
2017
;
88
:
285
92
.
94.
Cai
X
,
Liu
C
,
Zhang
TN
,
Zhu
YW
,
Dong
X
,
Xue
P
.
Down-regulation of FN1 inhibits colorectal carcinogenesis by suppressing proliferation, migration, and invasion
.
J Cell Biochem
.
2018
;
119
(
6
):
4717
28
.
95.
Li
B
,
Shen
W
,
Peng
H
,
Li
Y
,
Chen
F
,
Zheng
L
, et al
.
Fibronectin 1 promotes melanoma proliferation and metastasis by inhibiting apoptosis and regulating EMT
.
Onco Targets Ther
.
2019
;
12
:
3207
21
.
96.
Zhan
T
,
Rindtorff
N
,
Boutros
M
.
Wnt signaling in cancer
.
Oncogene
.
2017
;
36
(
11
):
1461
73
.
97.
Bach
JP
,
Rinn
B
,
Meyer
B
,
Dodel
R
,
Bacher
M
.
Role of MIF in inflammation and tumorigenesis
.
Oncology
.
2008
;
75
(
3–4
):
127
33
.
98.
Gold
LI
.
The role for transforming growth factor-beta (TGF-beta) in human cancer
.
Crit Rev Oncog
.
1999
;
10
(
4
):
303
60
.
99.
Yu
Y
,
Tan
CM
,
Jia
YY
.
Research status and the prospect of POSTN in various tumors
.
Neoplasma
.
2021
;
68
(
4
):
673
82
.
100.
Kobierzycki
C
,
Latkowski
KJ
,
Dziegiel
P
.
The usefulness of periostin determination in gynecology and obstetrics
.
Ginekol Pol
.
2020
;
91
(
6
):
364
51
.
101.
Chan
TC
,
Li
CF
,
Ke
HL
,
Wei
YC
,
Shiue
YL
,
Li
CC
, et al
.
High TNFAIP6 level is associated with poor prognosis of urothelial carcinomas
.
Urol Oncol
.
2019
;
37
(
4
):
293.e11
24
.
102.
Zhang
X
,
Xue
J
,
Yang
H
,
Zhou
T
,
Zu
G
.
TNFAIP6 promotes invasion and metastasis of gastric cancer and indicates poor prognosis of patients
.
Tissue Cell
.
2021
;
68
:
101455
.
103.
Jiang
J
,
Xu
J
,
Ou
L
,
Yin
C
,
Wang
Y
,
Shi
B
.
ITM2A inhibits the progression of bladder cancer by downregulating the phosphorylation of STAT3
.
Am J Cancer Res
.
2024
;
14
(
5
):
2202
15
.
104.
Zhang
R
,
Xu
T
,
Xia
Y
,
Wang
Z
,
Li
X
,
Chen
W
.
ITM2A as a tumor suppressor and its correlation with PD-L1 in breast cancer
.
Front Oncol
.
2020
;
10
:
581733
.
105.
Zeng
B
,
Zhou
M
,
Wu
H
,
Xiong
Z
.
SPP1 promotes ovarian cancer progression via Integrin β1/FAK/AKT signaling pathway
.
Onco Targets Ther
.
2018
;
11
:
1333
43
.
106.
Kijewska
M
,
Kocyk
M
,
Kloss
M
,
Stepniak
K
,
Korwek
Z
,
Polakowska
R
, et al
.
The embryonic type of SPP1 transcriptional regulation is re-activated in glioblastoma
.
Oncotarget
.
2017
;
8
(
10
):
16340
55
.
107.
Wang
J
,
Hao
F
,
Fei
X
,
Chen
Y
.
SPP1 functions as an enhancer of cell growth in hepatocellular carcinoma targeted by miR-181c
.
Am J Transl Res
.
2019
;
11
(
11
):
6924
37
.
108.
Zhao
K
,
Ma
Z
,
Zhang
W
.
Comprehensive analysis to identify SPP1 as a prognostic biomarker in cervical cancer
.
Front Genet
.
2021
;
12
:
732822
.
You do not currently have access to this content.