Background: The novel coronavirus strain SARS-CoV-2 triggered the COVID-19 pandemic with severe economic and social ramifications. As the pathophysiology of SARS-CoV-2 infection in the respiratory system becomes more understood, growing evidence suggests that the virus also impacts the homeostasis-regulating neuroendocrine system, potentially affecting other organ systems. Summary: This review explores the interactions between SARS-CoV-2 and the neuroendocrine system, highlighting the effect of this virus on various endocrine glands, including the brain, hypothalamus, pituitary, pineal, thyroid, parathyroid, adrenal glands, pancreatic islets, gonads, and adipose tissue. The viral invasion disrupts normal hormonal pathways, leading to a range of endocrine disorders, immune dysregulation, and metabolic disturbances. Key Messages: There is potential for SARS-CoV-2 to induce autoimmune responses, exacerbate existing endocrine conditions, and trigger new-onset disorders. Understanding these interactions is crucial for developing treatment strategies that address not only the respiratory symptoms of COVID-19 but also its endocrine complications. The review emphasizes the need for further research to elucidate the long-term effects of SARS-CoV-2 on endocrine health.

1.
Reimers
TJ
.
Introduction
. In:
Pineda
MH
,
Dooley
MP
, editors.
McDonald’s veterinary endocrinology and reproduction
. 5th ed.
Iowa State Press
;
2003
. p.
1
15
.
2.
Hiller-Sturmhöfel
S
,
Bartke
A
.
The endocrine system: an overview
.
Alcohol Res Health
.
1998
;
22
(
3
).
3.
Reimers
TJ
.
The pituitary gland
. In:
Pineda
MH
,
Dooley
MP
, editors.
McDonald’s veterinary endocrinology and reproduction
. 5th ed.
Iowa State Press
;
2003
. p.
17
34
.
4.
Taub
DD
.
Neuroendocrine interactions in the immune system
.
Cell Immunol
.
2008
;
252
(
1–2
):
1
6
.
5.
La Merrill
MA
,
Vandenberg
LN
,
Smith
MT
,
Goodson
W
,
Browne
P
,
Patisaul
HB
, et al
.
Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification
.
Nat Rev Endocrinol
.
2020
;
16
(
1
):
45
57
.
6.
Darbandi
M
,
Darbandi
S
,
Agarwal
A
,
Sengupta
P
,
Durairajanayagam
D
,
Henkel
R
, et al
.
Reactive oxygen species and male reproductive hormones
.
Reprod Biol Endocrinol
.
2018
;
16
(
1
):
87
.
7.
Nekoua
MP
,
Debuysschere
C
,
Vergez
I
,
Morvan
C
,
Mbani
CJ
,
Sane
F
, et al
.
Viruses and endocrine diseases
.
Microorganisms
.
2023
;
11
(
2
):
361
.
8.
Yang
JK
,
Lin
SS
,
Ji
XJ
,
Guo
LM
.
Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes
.
Acta Diabetol
.
2010
;
47
(
3
):
193
9
.
9.
Lombardi
AF
,
Afsahi
AM
,
Gupta
A
,
Gholamrezanezhad
A
.
Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), influenza, and COVID-19, beyond the lungs: a review article
.
Radiol Med
.
2021
;
126
(
4
):
561
9
.
10.
van der Werf
N
,
Kroese
FGM
,
Rozing
J
,
Hillebrands
JL
.
Viral infections as potential triggers of type 1 diabetes
.
Diabetes Metab Res Rev
.
2007
;
23
(
3
):
169
83
.
11.
Wu
H
,
Jiang
X
,
Gao
Y
,
Liu
W
,
Wang
F
,
Gong
M
, et al
.
Mumps virus infection disrupts blood-testis barrier through the induction of TNF-α in Sertoli cells
.
FASEB J
.
2019
;
33
(
11
):
12528
40
.
12.
Carré
A
,
Vecchio
F
,
Flodström-Tullberg
M
,
You
S
,
Mallone
R
.
Coxsackievirus and type 1 diabetes: diabetogenic mechanisms and implications for prevention
.
Endocr Rev
.
2023
;
44
(
4
):
737
51
.
13.
Tripathy
SK
,
Agrawala
RK
,
Baliarsinha
A
.
Endocrine alterations in HIV-infected patients
.
Indian J Endocrinol Metab
.
2015
;
19
(
1
):
143
7
.
14.
Youssef
J
,
Sadera
R
,
Mital
D
,
Ahmed
MH
.
HIV and the pituitary gland: clinical and biochemical presentations
.
J Lab Physicians
.
2021
;
13
(
1
):
84
90
.
15.
Razzaq
F
,
Dunbar
EM
,
Bonington
A
.
The development of cytomegalovirus-induced adrenal failure in a patient with AIDS while receiving corticosteroid therapy
.
HIV Med
.
2002
;
3
(
3
):
212
4
.
16.
Trevisan
M
,
Matkovic
U
,
Cusinato
R
,
Toppo
S
,
Palù
G
,
Barzon
L
.
Human cytomegalovirus productively infects adrenocortical cells and induces an early cortisol response
.
J Cell Physiol
.
2009
;
221
(
3
):
629
41
.
17.
Gale
EAM
.
Congenital rubella: citation virus or viral cause of type 1 diabetes
.
Diabetologia
.
2008
;
51
(
9
):
1559
66
.
18.
Antonelli
A
,
Ferri
C
,
Ferrari
SM
,
Colaci
M
,
Sansonno
D
,
Fallahi
P
.
Endocrine manifestations of hepatitis C virus infection
.
Nat Clin Pract Endocrinol Metab
.
2009
;
5
(
1
):
26
34
.
19.
Janegova
A
,
Janega
P
,
Rychly
B
,
Kuracinova
K
,
Babal
P
.
The role of Epstein-Barr virus infection in the development of autoimmune thyroid diseases
.
Endokrynol Pol
.
2015
;
66
(
2
):
132
6
.
20.
Dimos
G
,
Pappas
G
,
Akritidis
N
.
Subacute thyroiditis in the course of novel H1N1 influenza infection
.
Endocrine
.
2010
;
37
(
3
):
440
1
.
21.
Kino
T
,
Chrousos
GP
.
Virus-mediated modulation of the host endocrine signaling systems: clinical implications
.
Trends Endocrinol Metab
.
2007
;
18
(
4
):
159
66
.
22.
Brant
AC
,
Tian
W
,
Majerciak
V
,
Yang
W
,
Zheng
ZM
.
SARS-CoV-2: from its discovery to genome structure, transcription, and replication
.
Cell Biosci
.
2021
;
11
(
1
):
136
.
23.
Ohannessian
R
,
Duong
TA
,
Odone
A
.
Global telemedicine implementation and integration within health systems to fight the COVID-19 pandemic: a call to action
.
JMIR Public Health Surveill
.
2020
;
6
(
2
):
e18810
.
24.
Gusev
E
,
Sarapultsev
A
,
Solomatina
L
,
Chereshnev
V
.
Sars-Cov-2-Specific immune response and the pathogenesis of COVID-19
.
Int J Mol Sci
.
2022
;
23
(
3
):
1716
.
25.
Parasher
A
.
COVID-19: current understanding of its pathophysiology, clinical presentation and treatment
.
Postgrad Med J
.
2021
;
97
(
1147
):
312
20
.
26.
Hoffmann
M
,
Kleine-Weber
H
,
Schroeder
S
,
Krüger
N
,
Herrler
T
,
Erichsen
S
, et al
.
SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
.
Cell
.
2020
;
181
(
2
):
271
80.e8
.
27.
V’kovski
P
,
Kratzel
A
,
Steiner
S
,
Stalder
H
,
Thiel
V
.
Coronavirus biology and replication: implications for SARS-CoV-2
.
Nat Rev Microbiol
.
2021
;
19
(
3
):
155
70
.
28.
Zeng
C
,
Evans
JP
,
King
T
,
Zheng
YM
,
Oltz
EM
,
Whelan
SPJ
, et al
.
SARS-CoV-2 spreads through cell-to-cell transmission
.
Proc Natl Acad Sci U S A
.
2022
;
119
(
1
):
e2111400119
.
29.
Chegni
H
,
Babaii
H
,
Hassan
ZM
,
Pourshaban
M
.
Immune response and cytokine storm in SARS-CoV-2 infection: risk factors, ways of control and treatment
.
Eur J Inflamm
.
2022
;
20
.
30.
Hu
B
,
Guo
H
,
Zhou
P
,
Shi
ZL
.
Characteristics of SARS-CoV-2 and COVID-19
.
Nat Rev Microbiol
.
2021
;
19
(
3
):
141
54
.
31.
Yang
L
,
Xie
X
,
Tu
Z
,
Fu
J
,
Xu
D
,
Zhou
Y
.
The signal pathways and treatment of cytokine storm in COVID-19
.
Signal Transduct Target Ther
.
2021
;
6
(
1
):
255
.
32.
Paul
T
,
Ledderose
S
,
Bartsch
H
,
Sun
N
,
Soliman
S
,
Märkl
B
, et al
.
Adrenal tropism of SARS-CoV-2 and adrenal findings in a post-mortem case series of patients with severe fatal COVID-19
.
Nat Commun
.
2022
;
13
(
1
):
1589
.
33.
Song
Z
,
Bao
L
,
Yu
P
,
Qi
F
,
Gong
S
,
Wang
J
, et al
.
SARS-CoV-2 causes a systemically multiple organs damages and dissemination in hamsters
.
Front Microbiol
.
2020
;
11
:
618891
.
34.
Gu
WT
,
Zhou
F
,
Xie
WQ
,
Wang
S
,
Yao
H
,
Liu
YT
, et al
.
A potential impact of SARS-CoV-2 on pituitary glands and pituitary neuroendocrine tumors
.
Endocrine
.
2021
;
72
(
2
):
340
8
.
35.
Reiterer
M
,
Rajan
M
,
Gómez-Banoy
N
,
Lau
JD
,
Gomez-Escobar
LG
,
Ma
L
, et al
.
Hyperglycemia in acute COVID-19 is characterized by insulin resistance and adipose tissue infectivity by SARS-CoV-2
.
Cell Metab
.
2021
;
33
(
11
):
2174
88.e5
.
36.
Kleinridders
A
,
Cai
W
,
Cappellucci
L
,
Ghazarian
A
,
Collins
WR
,
Vienberg
SG
, et al
.
Insulin resistance in brain alters dopamine turnover and causes behavioral disorders
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
11
):
3463
8
.
37.
Li
MY
,
Li
L
,
Zhang
Y
,
Wang
XS
.
Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues
.
Infect Dis Poverty
.
2020
;
9
(
1
):
45
.
38.
Lukiw
WJ
,
Pogue
A
,
Hill
JM
.
SARS-CoV-2 infectivity and neurological targets in the brain
.
Cell Mol Neurobiol
.
2022
;
42
(
1
):
217
24
.
39.
Song
E
,
Zhang
C
,
Israelow
B
,
Lu-Culligan
A
,
Prado
AV
,
Skriabine
S
, et al
.
Neuroinvasion of SARS-CoV-2 in human and mouse brain
.
J Exp Med
.
2021
;
218
(
3
):
e20202135
.
40.
Xu
J
,
Lazartigues
E
.
Expression of ACE2 in human neurons supports the neuro-invasive potential of COVID-19 virus
.
Cell Mol Neurobiol
.
2022
;
42
(
1
):
305
9
.
41.
Gupta
T
,
Kumar
M
,
Kaur
UJ
,
Rao
A
,
Bharti
R
.
Mapping ACE2 and TMPRSS2 co-expression in human brain tissue: implications for SARS-CoV-2 neurological manifestations
.
J Neurovirol
.
2024
;
30
(
3
):
316
26
.
42.
Li
YC
,
Bai
WZ
,
Hashikawa
T
.
The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients
.
J Med Virol
.
2020
;
92
(
6
):
552
5
.
43.
Mao
L
,
Jin
H
,
Wang
M
,
Hu
Y
,
Chen
S
,
He
Q
, et al
.
Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China
.
JAMA Neurol
.
2020
;
77
(
6
):
683
90
.
44.
Caress
JB
,
Castoro
RJ
,
Simmons
Z
,
Scelsa
SN
,
Lewis
RA
,
Ahlawat
A
, et al
.
COVID-19–associated Guillain-Barré syndrome: the early pandemic experience
.
Muscle Nerve
.
2020
;
62
(
4
):
485
91
.
45.
Moriguchi
T
,
Harii
N
,
Goto
J
,
Harada
D
,
Sugawara
H
,
Takamino
J
, et al
.
A first case of meningitis/encephalitis associated with SARS-Coronavirus-2
.
Int J Infect Dis
.
2020
;
94
:
55
8
.
46.
Povlow
A
,
Auerbach
AJ
.
Acute cerebellar ataxia in COVID-19 infection: a case report
.
J Emerg Med
.
2021
;
60
(
1
):
73
6
.
47.
Varatharaj
A
,
Thomas
N
,
Ellul
MA
,
Davies
NWS
,
Pollak
TA
,
Tenorio
EL
, et al
.
Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study
.
Lancet Psychiatr
.
2020
;
7
(
10
):
875
82
.
48.
Kacprzak
A
,
Malczewski
D
,
Domitrz
I
.
Headache attributed to SARS-CoV-2 infection or covid-19 related headache: not migraine-like problem-original research
.
Brain Sci
.
2021
;
11
(
11
):
1406
.
49.
Lechien
JR
,
Chiesa-Estomba
CM
,
De Siati
DR
,
Horoi
M
,
Le Bon
SD
,
Rodriguez
A
, et al
.
Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study
.
Eur Arch Otorhinolaryngol
.
2020
;
277
(
8
):
2251
61
.
50.
Waliszewska-Prosół
M
,
Budrewicz
S
.
The unusual course of a migraine attack during COVID-19 infection: case studies of three patients
.
J Infect Public Health
.
2021
;
14
(
7
):
903
5
.
51.
Straburzyński
M
,
Kuca-Warnawin
E
,
Waliszewska-Prosół
M
.
COVID-19-related headache and innate immune response: a narrative review
.
Neurol Neurochir Pol
.
2023
;
57
(
1
):
43
52
.
52.
Paniz-Mondolfi
A
,
Bryce
C
,
Grimes
Z
,
Gordon
RE
,
Reidy
J
,
Lednicky
J
, et al
.
Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
.
J Med Virol
.
2020
;
92
(
7
):
699
702
.
53.
Zhou
L
,
Zhang
M
,
Wang
J
,
Gao
J
.
Sars-Cov-2: underestimated damage to nervous system
.
Travel Med Infect Dis
.
2020
;
36
:
101642
.
54.
Pellegrini
L
,
Albecka
A
,
Mallery
DL
,
Kellner
MJ
,
Paul
D
,
Carter
AP
, et al
.
SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids
.
Cell Stem Cell
.
2020
;
27
(
6
):
951
61.e5
.
55.
Wu
M-L
,
Xie
C
,
Li
X
,
Sun
J
,
Zhao
J
,
Wang
J-H
.
Mast cell activation triggered by SARS-CoV-2 causes inflammation in brain microvascular endothelial cells and microglia
.
Front Cell Infect Microbiol
.
2024
;
14
:
1358873
.
56.
Carver
JJ
,
Lau
KM
,
Puckett
AE
,
Didonna
A
.
Autoimmune demyelination alters hypothalamic transcriptome and endocrine function
.
J Neuroinflammation
.
2024
;
21
(
1
):
12
.
57.
Gizzi
G
,
Mazzeschi
C
,
Delvecchio
E
,
Beccari
T
,
Albi
E
.
Possible stress–neuroendocrine system–psychological symptoms relationship in pregnant women during the COVID-19 pandemic
.
Int J Environ Res Public Health
.
2022
;
19
(
18
):
11497
.
58.
Rebello
CJ
,
Axelrod
CL
,
Reynolds
CF
,
Greenway
FL
,
Kirwan
JP
.
Exercise as a moderator of persistent neuroendocrine symptoms of COVID-19
.
Exerc Sport Sci Rev
.
2022
;
50
(
2
):
65
72
.
59.
Mussa
BM
,
Srivastava
A
,
Verberne
AJM
.
Covid-19 and neurological impairment: hypothalamic circuits and beyond
.
Viruses
.
2021
;
13
(
3
):
498
.
60.
Tsukahara
T
,
Brann
DH
,
Datta
SR
.
Mechanisms of SARS CoV-2 associated anosmia
.
Physiol Rev
.
2023
;
103
(
4
):
2759
66
.
61.
Ye
Q
,
Zhou
J
,
He
Q
,
Li
RT
,
Yang
G
,
Zhang
Y
, et al
.
SARS-CoV-2 infection in the mouse olfactory system
.
Cell Discov
.
2021
;
7
(
1
):
49
.
62.
Meinhardt
J
,
Radke
J
,
Dittmayer
C
,
Franz
J
,
Thomas
C
,
Mothes
R
, et al
.
Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19
.
Nat Neurosci
.
2021
;
24
(
2
):
168
75
.
63.
Jiao
L
,
Yang
Y
,
Yu
W
,
Zhao
Y
,
Long
H
,
Gao
J
, et al
.
The olfactory route is a potential way for SARS-CoV-2 to invade the central nervous system of rhesus monkeys
.
Signal Transduct Target Ther
.
2021
;
6
(
1
):
169
.
64.
Klingenstein
M
,
Klingenstein
S
,
Neckel
PH
,
Mack
AF
,
Wagner
AP
,
Kleger
A
, et al
.
Evidence of SARS-CoV2 entry protein ACE2 in the human nose and olfactory bulb
.
Cells Tissues Organs
.
2020
;
209
(
4–6
):
155
64
.
65.
Bagasra
O
,
Pandey
P
,
Sanamandra
JR
,
Houston
JM
,
McLean
E
,
Albrecht
H
.
Infectivity of human olfactory neurons to sars-cov-2: a link to anosmia
.
Oman Med J
.
2021
;
36
(
5
):
e307
.
66.
Elkazzaz
M
,
Ahmed
A
,
Abo-Amer
YEE
,
Hydara
T
,
Haikal
A
,
Razek
DNAE
, et al
.
In silico discovery of GPCRs and GnRHRs as novel binding receptors of SARS-CoV-2 spike protein could explain neuroendocrine disorders in COVID-19
.
Vaccines
.
2022
;
10
(
9
):
1500
.
67.
Hornick
MG
,
Olson
ME
,
Jadhav
AL
.
SARS-CoV-2 psychiatric sequelae: a review of neuroendocrine mechanisms and therapeutic strategies
.
Int J Neuropsychopharmacol
.
2022
;
25
(
1
):
1
12
.
68.
Ha
S
,
Jin
B
,
Clemmensen
B
,
Park
P
,
Mahboob
S
,
Gladwill
V
, et al
.
Serotonin is elevated in COVID-19-associated diarrhoea
.
Gut
.
2021
;
70
(
10
):
2015
7
.
69.
Santos
AP
,
Couto
CF
,
Pereira
SS
,
Monteiro
MP
.
Is serotonin the missing link between COVID-19 course of severity in patients with diabetes and obesity
.
Neuroendocrinology
.
2022
;
112
(
11
):
1039
45
.
70.
Al-Kuraishy
HM
,
Al-Gareeb
AI
,
Butnariu
M
,
Batiha
GES
.
The crucial role of prolactin-lactogenic hormone in Covid-19
.
Mol Cell Biochem
.
2022
;
477
(
5
):
1381
92
.
71.
Chigr
F
,
Merzouki
M
,
Najimi
M
.
Autonomic brain centers and pathophysiology of COVID-19
.
ACS Chem Neurosci
.
2020
;
11
(
11
):
1520
2
.
72.
Stein
SR
,
Ramelli
SC
,
Grazioli
A
,
Chung
JY
,
Singh
M
,
Yinda
CK
, et al
.
SARS-CoV-2 infection and persistence in the human body and brain at autopsy
.
Nature
.
2022
;
612
(
7941
):
758
63
.
73.
Price
JL
,
Slotnick
BM
,
Revial
M-F
.
Olfactory projections to the hypothalamus
.
J Comp Neurol
.
1991
;
306
(
3
):
447
61
.
74.
Doobay
MF
,
Talman
LS
,
Obr
TD
,
Tian
X
,
Davisson
RL
,
Lazartigues
E
.
Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system
.
Am J Physiol Regul Integr Comp Physiol
.
2007
;
292
(
1
):
R373
81
.
75.
Wei
HH
,
Yuan
XS
,
Chen
ZK
,
Chen
PP
,
Xiang
Z
,
Qu
WM
, et al
.
Presynaptic inputs to vasopressin neurons in the hypothalamic supraoptic nucleus and paraventricular nucleus in mice
.
Exp Neurol
.
2021
;
343
:
113784
.
76.
Hammad
R
,
Elshafei
A
,
Khidr
EG
,
El-Husseiny
AA
,
Gomaa
MH
,
Kotb
HG
, et al
.
Copeptin: a neuroendocrine biomarker of COVID-19 severity
.
Biomark Med
.
2022
;
16
(
8
):
589
97
.
77.
Tzoulis
P
,
Waung
JA
,
Bagkeris
E
,
Hussein
Z
,
Biddanda
A
,
Cousins
J
, et al
.
Dysnatremia is a predictor for morbidity and mortality in hospitalized patients with COVID-19
.
J Clin Endocrinol Metab
.
2021
;
106
(
6
):
1637
48
.
78.
Ruiz-Sánchez
JG
,
Núñez-Gil
IJ
,
Cuesta
M
,
Rubio
MA
,
Maroun-Eid
C
,
Arroyo-Espliguero
R
, et al
.
Prognostic impact of hyponatremia and hypernatremia in COVID-19 pneumonia. A HOPE-COVID-19 (health outcome predictive evaluation for COVID-19) registry analysis
.
Front Endocrinol
.
2020
;
11
:
599255
.
79.
Gregoriano
C
,
Molitor
A
,
Haag
E
,
Kutz
A
,
Koch
D
,
Haubitz
S
, et al
.
Activation of vasopressin system during COVID-19 is associated with adverse clinical outcomes: an observational study
.
J Endocr Soc
.
2021
;
5
(
6
):
bvab045
.
80.
Habib
MB
,
Sardar
S
,
Sajid
J
.
Acute symptomatic hyponatremia in setting of SIADH as an isolated presentation of COVID-19
.
IDCases
.
2020
;
21
:
e00859
.
81.
de Melo
IS
,
Sabino-Silva
R
,
Cunha
TM
,
Goulart
LR
,
Reis
WL
,
Jardim
ACG
, et al
.
Hydroelectrolytic disorder in COVID-19 patients: evidence supporting the involvement of subfornical organ and paraventricular nucleus of the hypothalamus
.
Neurosci Biobehav Rev
.
2021
;
124
:
216
23
.
82.
Poma
AM
,
Proietti
A
,
Macerola
E
,
Bonuccelli
D
,
Conti
M
,
Salvetti
A
, et al
.
Suppression of pituitary hormone genes in subjects who died from COVID-19 independently of virus detection in the gland
.
J Clin Endocrinol Metab
.
2022
;
107
(
8
):
2243
53
.
83.
Han
T
,
Kang
J
,
Li
G
,
Ge
J
,
Gu
J
.
Analysis of 2019-nCoV receptor ACE2 expression in different tissues and its significance study
.
Ann Transl Med
.
2020
;
8
(
17
):
1077
.
84.
Piticchio
T
,
Le Moli
R
,
Tumino
D
,
Frasca
F
.
Relationship between betacoronaviruses and the endocrine system: a new key to understand the COVID-19 pandemic – a comprehensive review
.
J Endocrinol Invest
.
2021
;
44
(
8
):
1553
70
.
85.
Bellastella
G
,
Cirillo
P
,
Carbone
C
,
Scappaticcio
L
,
Maio
A
,
Botta
G
, et al
.
Neuroimmunoendocrinology of SARS-CoV-2 infection
.
Biomedicines
.
2022
;
10
(
11
):
2855
.
86.
Philippens
IHCHM
,
Böszörményi
KP
,
Wubben
JA
,
Fagrouch
ZC
,
van Driel
N
,
Mayenburg
AQ
, et al
.
SARS-CoV-2 causes brain inflammation and induces Lewy body formation in macaques
.
bioRxiv
.
2021
.
87.
Murvelashvili
N
,
Tessnow
A
.
A case of hypophysitis following immunization with the mRNA-1273 SARS-CoV-2 vaccine
.
J Investig Med High Impact Case Rep
.
2021
;
9
:
23247096211043386
.
88.
Joshi
M
,
Gunawardena
S
,
Goenka
A
,
Ey
E
,
Kumar
G
.
Post COVID-19 lymphocytic hypophysitis: a rare presentation
.
Child Neurol Open
.
2022
;
9
:
2329048X221103051
.
89.
Menotti
S
,
Giampietro
A
,
Raia
S
,
Veleno
M
,
Angelini
F
,
Tartaglione
T
, et al
.
Unveiling the etiopathogenic spectrum of hypophysitis: a narrative review
.
J Pers Med
.
2023
;
13
(
8
):
1210
.
90.
Hazzi
C
,
Villemure-Poliquin
N
,
Nadeau
S
,
Champagne
PO
.
SARS-CoV-2 infection, a risk factor for pituitary apoplexy? A case series and literature review
.
Ear Nose Throat J
.
2024
;
103
(
1_Suppl l
):
153S
161S
.
91.
Briet
C
,
Salenave
S
,
Bonneville
JF
,
Laws
ER
,
Chanson
P
.
Pituitary apoplexy
.
Endocr Rev
.
2015
;
36
(
6
):
622
45
.
92.
Bordes
SJ
,
Phang-Lyn
S
,
Najera
E
,
Borghei-Razavi
H
,
Adada
B
.
Pituitary apoplexy attributed to COVID-19 infection in the absence of an underlying macroadenoma or other identifiable cause
.
Cureus
.
2021
;
13
(
2
):
e13315
.
93.
Martinez-Perez
R
,
Kortz
MW
,
Carroll
BW
,
Duran
D
,
Neill
JS
,
Luzardo
GD
, et al
.
Coronavirus disease 2019 and pituitary apoplexy: a single-center case series and review of the literature
.
World Neurosurg
.
2021
;
152
:
e678
87
.
94.
Solorio-Pineda
S
,
Almendárez-Sánchez
CA
,
Tafur-Grandett
AA
,
Ramos-Martínez
GA
,
Huato-Reyes
R
,
Ruiz-Flores
MI
, et al
.
Pituitary macroadenoma apoplexy in a severe acute respiratory syndrome-coronavirus-2-positive testing: causal or casual
.
Surg Neurol Int
.
2020
;
11
:
304
.
95.
Buzhdygan
TP
,
DeOre
BJ
,
Baldwin-Leclair
A
,
Bullock
TA
,
McGary
HM
,
Khan
JA
, et al
.
The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier
.
Neurobiol Dis
.
2020
;
146
:
105131
.
96.
Claustrat
B
,
Brun
J
,
Chazot
G
.
The basic physiology and pathophysiology of melatonin
.
Sleep Med Rev
.
2005
;
9
(
1
):
11
24
.
97.
Anderson
G
,
Carbone
A
,
Mazzoccoli
G
.
Tryptophan metabolites and aryl hydrocarbon receptor in severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2) pathophysiology
.
Int J Mol Sci
.
2021
;
22
(
4
):
1597
.
98.
Spalgais
S
,
Ojha
UC
,
Choudhari
OK
,
Rani
A
.
Lymphocytes and melatonin interaction in COVID-19 and serotonin sepsis
.
Indian J Med Biochem
.
2021
;
24
(
2
):
81
2
.
99.
Pandi-Perumal
SR
,
Cardinali
DP
,
Reiter
RJ
,
Brown
GM
.
Low melatonin as a contributor to SARS-CoV-2 disease
.
Melatonin Res
.
2020
;
3
(
4
):
558
76
.
100.
Molina-Carballo
A
,
Palacios-López
R
,
Jerez-Calero
A
,
Augustín-Morales
MC
,
Agil
A
,
Muñoz-Hoyos
A
, et al
.
Protective effect of melatonin administration against SARS-COV-2 infection: a systematic review
.
Curr Issues Mol Biol
.
2021
;
44
(
1
):
31
45
.
101.
Cecon
E
,
Izabelle
C
,
Poder
SL
,
Real
F
,
Zhu
A
,
Tu
L
, et al
.
Therapeutic potential of melatonin and melatonergic drugs on K18-hACE2 mice infected with SARS-CoV-2
.
J Pineal Res
.
2022
;
72
(
1
):
e12772
.
102.
Martin Gimenez
VM
,
Prado
N
,
Diez
E
,
Manucha
W
,
Reiter
RJ
.
New proposal involving nanoformulated melatonin targeted to the mitochondria as a potential COVID-19 treatment
.
Nanomedicine
.
2020
;
15
(
29
):
2819
21
.
103.
Cardinali
DP
,
Brown
GM
,
Pandi-Perumal
SR
.
Can melatonin be a potential “silver bullet” in treating COVID-19 patients
.
Diseases
.
2020
;
8
(
4
):
44
.
104.
Dinicolantonio
JJ
,
McCarty
M
,
Barroso-Aranda
J
.
Melatonin may decrease risk for and aid treatment of COVID-19 and other RNA viral infections
.
Open Heart
.
2021
;
8
(
1
):
e001568
.
105.
Vlachou
M
,
Siamidi
A
,
Dedeloudi
A
,
Konstantinidou
SK
,
Papanastasiou
IP
.
Pineal hormone melatonin as an adjuvant treatment for COVID-19 (Review)
.
Int J Mol Med
.
2021
;
47
(
4
):
47
.
106.
Zheng
J
,
Cui
Z
,
Shi
N
,
Tian
S
,
Chen
T
,
Zhong
X
, et al
.
Suppression of the hypothalamic-pituitary-thyroid axis is associated with the severity of prognosis in hospitalized patients with COVID-19
.
BMC Endocr Disord
.
2021
;
21
(
1
):
228
.
107.
Rossetti
CL
,
Cazarin
J
,
Hecht
F
,
Beltrão
FEL
,
Ferreira
ACF
,
Fortunato
RS
, et al
.
COVID-19 and thyroid function: what do we know so far
.
Front Endocrinol
.
2022
;
13
:
1041676
.
108.
Chen
M
,
Zhou
W
,
Xu
W
.
Thyroid function analysis in 50 patients with COVID-19: a retrospective study
.
Thyroid
.
2021
;
31
(
1
):
8
11
.
109.
Muller
I
,
Cannavaro
D
,
Dazzi
D
,
Covelli
D
,
Mantovani
G
,
Muscatello
A
, et al
.
SARS-CoV-2-related atypical thyroiditis
.
Lancet Diabetes Endocrinol
.
2020
;
8
(
9
):
739
41
.
110.
Khoo
B
,
Tan
T
,
Clarke
SA
,
Mills
EG
,
Patel
B
,
Modi
M
, et al
.
Thyroid function before, during, and after COVID-19
.
J Clin Endocrinol Metab
.
2021
;
106
(
2
):
e803
11
.
111.
Çabuk
SA
,
Cevher
AZ
,
Küçükardalı
Y
.
Thyroid function during and after COVID-19 infection: a review
.
US Endocrinol
.
2022
;
18
(
1
):
58
62
.
112.
Murugan
AK
,
Alzahrani
AS
.
SARS-CoV-2 plays a pivotal role in inducing hyperthyroidism of Graves’ disease
.
Endocrine
.
2021
;
73
(
2
):
243
54
.
113.
Harris
A
,
Al Mushref
M
.
Graves’ thyrotoxicosis following SARS-CoV-2 infection
.
AACE Clin Case Rep
.
2021
;
7
(
1
):
14
6
.
114.
Mateu-Salat
M
,
Urgell
E
,
Chico
A
.
SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves’ disease after COVID-19
.
J Endocrinol Invest
.
2020
;
43
(
10
):
1527
8
.
115.
Jiménez-Blanco
S
,
Pla-Peris
B
,
Marazuela
M
.
COVID-19: a cause of recurrent Graves’ hyperthyroidism
.
J Endocrinol Invest
.
2021
;
44
(
2
):
387
8
.
116.
Aemaz Ur Rehman
M
,
Farooq
H
,
Ali
MM
,
Ebaad Ur Rehman
M
,
Dar
QA
,
Hussain
A
.
The association of subacute thyroiditis with COVID-19: a systematic review
.
SN Compr Clin Med
.
2021
;
3
(
7
):
1515
27
.
117.
Naguib
R
.
Potential relationships between COVID-19 and the thyroid gland: an update
.
J Int Med Res
.
2022
;
50
(
2
):
3000605221082898
.
118.
Rotondi
M
,
Coperchini
F
,
Ricci
G
,
Denegri
M
,
Croce
L
,
Ngnitejeu
ST
, et al
.
Detection of SARS-COV-2 receptor ACE-2 mRNA in thyroid cells: a clue for COVID-19-related subacute thyroiditis
.
J Endocrinol Invest
.
2021
;
44
(
5
):
1085
90
.
119.
Boaventura
P
,
Macedo
S
,
Ribeiro
F
,
Jaconiano
S
,
Soares
P
.
Post-COVID-19 condition: where are we now
.
Life
.
2022
;
12
(
4
):
517
.
120.
Brancatella
A
,
Ricci
D
,
Viola
N
,
Sgrò
D
,
Santini
F
,
Latrofa
F
.
Subacute thyroiditis after SARS-COV-2 infection
.
J Clin Endocrinol Metab
.
2020
;
105
(
7
):
dgaa276
.
121.
Lania
A
,
Sandri
MT
,
Cellini
M
,
Mirani
M
,
Lavezzi
E
,
Mazziotti
G
.
Thyrotoxicosis in patients with COVID-19: the THYRCOV study
.
Eur J Endocrinol
.
2020
;
183
(
4
):
381
7
.
122.
Lee
KA
,
Kim
YJ
,
Jin
HY
.
Thyrotoxicosis after COVID-19 vaccination: seven case reports and a literature review
.
Endocrine
.
2021
;
74
(
3
):
470
2
.
123.
Siolos
A
,
Gartzonika
K
,
Tigas
S
.
Thyroiditis following vaccination against COVID-19: report of two cases and review of the literature
.
Metabol Open
.
2021
;
12
:
100136
.
124.
Vera-Lastra
O
,
Ordinola Navarro
A
,
Cruz Domiguez
MP
,
Medina
G
,
Sánchez Valadez
TI
,
Jara
LJ
.
Two cases of graves’ disease following SARS-CoV-2 vaccination: an autoimmune/inflammatory syndrome induced by adjuvants
.
Thyroid
.
2021
;
31
(
9
):
1436
9
.
125.
Palestro
CJ
,
Tomas
MB
,
Tronco
GG
.
Radionuclide imaging of the parathyroid glands
.
Semin Nucl Med
.
2005
;
35
(
4
):
266
76
.
126.
Ding
Y
,
He
L
,
Zhang
Q
,
Huang
Z
,
Che
X
,
Hou
J
, et al
.
Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways
.
J Pathol
.
2004
;
203
(
2
):
622
30
.
127.
Elkattawy
S
,
Alyacoub
R
,
Ayad
S
,
Pandya
M
,
Eckman
A
.
A novel case of hypoparathyroidism secondary to SARS-CoV-2 infection
.
Cureus
.
2020
;
12
(
8
):
e10097
.
128.
Markov
A
,
Krutilova
P
,
Salam
M
.
ODP100 hypoparathyroidism in the setting of COVID-19: increasingly common phenomenon
.
J Endocr Soc
.
2022
;
6
(
Suppl_1
):
A167
.
129.
Georgakopoulou
V
,
Avramopoulos
P
,
Papalexis
P
,
Bitsani
A
,
Damaskos
C
,
Garmpi
A
, et al
.
COVID-19 induced hypoparathyroidism: a case report
.
Exp Ther Med
.
2022
;
23
(
5
):
346
.
130.
Hashim
M
,
Athar
S
,
Gaba
WH
.
New onset adrenal insufficiency in a patient with COVID-19
.
BMJ Case Rep
.
2021
;
14
(
1
):
e237690
.
131.
Kanczkowski
W
,
Beuschlein
F
,
Bornstein
SR
.
Is there a role for the adrenal glands in long COVID
.
Nat Rev Endocrinol
.
2022
;
18
(
8
):
451
2
.
132.
Pal
R
,
Banerjee
M
.
COVID-19 and the endocrine system: exploring the unexplored
.
J Endocrinol Invest
.
2020
;
43
(
7
):
1027
31
.
133.
Zinserling
VA
,
Semenova
NY
,
Markov
AG
,
Rybalchenko
OV
,
Wang
J
,
Rodionov
RN
, et al
.
Inflammatory cell infiltration of adrenals in COVID-19
.
Horm Metab Res
.
2020
;
52
(
9
):
639
41
.
134.
Sia
SF
,
Yan
LM
,
Chin
AWH
,
Fung
K
,
Choy
KT
,
Wong
AYL
, et al
.
Pathogenesis and transmission of SARS-CoV-2 in golden hamsters
.
Nature
.
2020
;
583
(
7818
):
834
8
.
135.
Francis
ME
,
Goncin
U
,
Kroeker
A
,
Swan
C
,
Ralph
R
,
Lu
Y
, et al
.
SARS-CoV-2 infection in the Syrian hamster model causes inflammation as well as type I interferon dysregulation in both respiratory and non-respiratory tissues including the heart and kidney
.
PLoS Pathog
.
2021
;
17
(
7
):
e1009705
.
136.
Siejka
A
,
Barabutis
N
.
Adrenal insufficiency in the COVID-19 era
.
Am J Physiol Endocrinol Metab
.
2021
;
320
(
4
):
E784
5
.
137.
Chabre
O
,
Goichot
B
,
Zenaty
D
,
Bertherat
J
.
Group 1. Epidemiology of primary and secondary adrenal insufficiency: prevalence and incidence, acute adrenal insufficiency, long-term morbidity and mortality
.
Ann Endocrinol
.
2017
;
78
(
6
):
490
4
.
138.
Garg
MK
,
Gopalakrishnan
M
,
Yadav
P
,
Misra
S
.
Endocrine involvement in COVID-19: mechanisms, clinical features, and implications for care
.
Indian J Endocrinol Metab
.
2020
;
24
(
5
):
381
6
.
139.
Jensterle
M
,
Herman
R
,
Janež
A
,
Mahmeed
WA
,
Al-Rasadi
K
,
Al-Alawi
K
, et al
.
The relationship between COVID-19 and hypothalamic–pituitary–adrenal Axis: a large spectrum from glucocorticoid insufficiency to excess – the CAPISCO International Expert Panel
.
Int J Mol Sci
.
2022
;
23
(
13
):
7326
.
140.
Mao
Y
,
Xu
B
,
Guan
W
,
Xu
D
,
Li
F
,
Ren
R
, et al
.
The adrenal cortex, an underestimated site of SARS-CoV-2 infection
.
Front Endocrinol
.
2020
;
11
:
593179
.
141.
Gonen
MS
,
De Bellis
A
,
Durcan
E
,
Bellastella
G
,
Cirillo
P
,
Scappaticcio
L
, et al
.
Assessment of neuroendocrine changes and hypothalamo-pituitary autoimmunity in patients with COVID-19
.
Horm Metab Res
.
2022
;
54
(
3
):
153
61
.
142.
Clarke
SA
,
Phylactou
M
,
Patel
B
,
Mills
EG
,
Muzi
B
,
Izzi-Engbeaya
C
, et al
.
Normal adrenal and thyroid function in patients who survive COVID-19 infection
.
J Clin Endocrinol Metab
.
2021
;
106
(
8
):
2208
20
.
143.
Akter
F
,
Ahmad
R
,
Haque
M
.
Endocrine flawed in covid-19 era
.
Bangladesh J Med Sci
.
2021
;
20
(
5
):
49
64
.
144.
Ferraù
F
,
Ceccato
F
,
Cannavò
S
,
Scaroni
C
.
What we have to know about corticosteroids use during SARS-COV-2 infection
.
J Endocrinol Invest
.
2021
;
44
(
4
):
693
701
.
145.
Graf
A
,
Armeni
E
,
Dickinson
L
,
Stubbs
M
,
Craven
B
,
Srirangalingam
U
, et al
.
Adrenal haemorrhage and infarction in the setting of vaccine-induced immune thrombocytopenia and thrombosis after SARS-CoV-2 (Oxford–AstraZeneca) vaccination
.
Endocrinol Diabetes Metab Case Rep
.
2022
;
2022
(
1
).
146.
Boddu
SK
,
Aurangabadkar
G
,
Kuchay
MS
.
New onset diabetes, type 1 diabetes and COVID-19
.
Diabetes Metab Syndr
.
2020
;
14
(
6
):
2211
7
.
147.
Liu
F
,
Long
X
,
Zhang
B
,
Zhang
W
,
Chen
X
,
Zhang
Z
.
ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection
.
Clin Gastroenterol Hepatol
.
2020
;
18
(
9
):
2128
30.e2
.
148.
Lazartigues
E
,
Qadir
MMF
,
Mauvais-Jarvis
F
.
Endocrine significance of SARS-CoV-2’s reliance on ACE2
.
Endocrinol
.
2020
;
161
(
9
):
bqaa108
.
149.
Shaharuddin
SH
,
Wang
V
,
Santos
RS
,
Gross
A
,
Wang
Y
,
Jawanda
H
, et al
.
Deleterious effects of SARS-CoV-2 infection on human pancreatic cells
.
Front Cell Infect Microbiol
.
2021
;
11
:
678482
.
150.
Yang
L
,
Han
Y
,
Nilsson-Payant
BE
,
Gupta
V
,
Wang
P
,
Duan
X
, et al
.
A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids
.
Cell Stem Cell
.
2020
;
27
(
1
):
125
36.e7
.
151.
Kusmartseva
I
,
Wu
W
,
Syed
F
,
Van Der Heide
V
,
Jorgensen
M
,
Joseph
P
, et al
.
Expression of SARS-CoV-2 entry factors in the pancreas of normal organ donors and individuals with COVID-19
.
Cell Metab
.
2020
;
32
(
6
):
1041
51.e6
.
152.
Steenblock
C
,
Richter
S
,
Berger
I
,
Barovic
M
,
Schmid
J
,
Schubert
U
, et al
.
Viral infiltration of pancreatic islets in patients with COVID-19
.
Nat Commun
.
2021
;
12
(
1
):
3534
.
153.
Müller
JA
,
Groß
R
,
Conzelmann
C
,
Krüger
J
,
Merle
U
,
Steinhart
J
, et al
.
SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas
.
Nat Metab
.
2021
;
3
(
2
):
149
65
.
154.
Wu
CT
,
Lidsky
PV
,
Xiao
Y
,
Lee
IT
,
Cheng
R
,
Nakayama
T
, et al
.
SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment
.
Cell Metab
.
2021
;
33
(
8
):
1565
76.e5
.
155.
Tang
X
,
Uhl
S
,
Zhang
T
,
Xue
D
,
Li
B
,
Vandana
JJ
, et al
.
SARS-CoV-2 infection induces beta cell transdifferentiation
.
Cell Metab
.
2021
;
33
(
8
):
1577
91.e7
.
156.
Millette
K
,
Cuala
J
,
Wang
P
,
Marks
C
,
Woo
V
,
Hayun
M
, et al
.
SARS-CoV2 infects pancreatic beta cells in vivo and induces cellular and subcellular disruptions that reflect beta cell dysfunction
.
Res Sq
.
2021
.
157.
Steenblock
C
,
Hassanein
M
,
Khan
EG
,
Yaman
M
,
Kamel
M
,
Barbir
M
, et al
.
Diabetes and COVID-19: short- and long-term consequences
.
Horm Metab Res
.
2022
;
54
(
8
):
503
9
.
158.
Khunti
K
,
Del Prato
S
,
Mathieu
C
,
Kahn
SE
,
Gabbay
RA
,
Buse
JB
.
Covid-19, hyperglycemia, and new-onset diabetes
.
Diabetes Care
.
2021
;
44
(
12
):
2645
55
.
159.
Memon
B
,
Abdelalim
EM
.
ACE2 function in the pancreatic islet: implications for relationship between SARS-CoV-2 and diabetes
.
Acta Physiol
.
2021
;
233
(
4
):
e13733
.
160.
Sinagra
E
,
Shahini
E
,
Crispino
F
,
Macaione
I
,
Guarnotta
V
,
Marasà
M
, et al
.
COVID-19 and the pancreas: a narrative review
.
Life
.
2022
;
12
(
9
):
1292
.
161.
Ippolito
E
.
New-onset hyperglycemia after SARS-COV-2 infection
.
2023
.
162.
Unsworth
R
,
Wallace
S
,
Oliver
NS
,
Yeung
S
,
Kshirsagar
A
,
Naidu
H
, et al
.
New-onset type 1 diabetes in children during COVID-19: multicenter regional findings in the U.K
.
Diabetes Care
.
2020
;
43
(
11
):
e170
1
.
163.
Qadir
MMF
,
Bhondeley
M
,
Beatty
W
,
Gaupp
DD
,
Doyle-Meyers
LA
,
Fischer
T
, et al
.
SARS-CoV-2 infection of the pancreas promotes thrombofibrosis and is associated with new-onset diabetes
.
JCI Insight
.
2021
;
6
(
16
):
e151551
.
164.
Galbadage
T
,
Peterson
BM
,
Awada
J
,
Buck
AS
,
Ramirez
DA
,
Wilson
J
, et al
.
Systematic review and meta-analysis of sex-specific COVID-19 clinical outcomes
.
Front Med
.
2020
;
7
:
348
.
165.
Breithaupt-Faloppa
AC
,
Correia
CJ
,
Prado
CM
,
Stilhano
RS
,
Ureshino
RP
,
Moreira
LFP
.
17β-Estradiol, a potential ally to alleviate SARS-CoV-2 infection
.
Clinics
.
2020
;
75
:
e1980
.
166.
Channappanavar
R
,
Fett
C
,
Mack
M
,
Ten Eyck
PP
,
Meyerholz
DK
,
Perlman
S
.
Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection
.
J Immunol
.
2017
;
198
(
10
):
4046
53
.
167.
Kovats
S
.
Estrogen receptors regulate innate immune cells and signaling pathways
.
Cell Immunol
.
2015
;
294
(
2
):
63
9
.
168.
Salciccia
S
,
Del Giudice
F
,
Eisenberg
ML
,
Mastroianni
CM
,
De Berardinis
E
,
Ricciuti
GP
, et al
.
Testosterone target therapy: focus on immune response, controversies and clinical implications in patients with COVID-19 infection
.
Ther Adv Endocrinol Metab
.
2021
;
12
:
20420188211010105
.
169.
Fan
C
,
Lu
W
,
Li
K
,
Ding
Y
,
Wang
J
.
ACE2 expression in kidney and testis may cause kidney and testis infection in COVID-19 patients
.
Front Med
.
2020
;
7
:
563893
.
170.
Leanza
C
,
Mongioì
LM
,
Cannarella
R
,
La Vignera
S
,
Condorelli
RA
,
Calogero
AE
.
The possible role of SARS-CoV-2 in male fertility: a narrative review
.
Endocrines
.
2022
;
3
(
3
):
552
9
.
171.
Hezavehei
M
,
Shokoohian
B
,
Nasr-Esfahani
MH
,
Shpichka
A
,
Timashev
P
,
Shahverdi
A
, et al
.
Possible male reproduction complications after Coronavirus pandemic
.
Cell J
.
2021
;
23
(
4
):
382
8
.
172.
Dutta
S
,
Sengupta
P
.
SARS-CoV-2 and male infertility: possible multifaceted pathology
.
Reprod Sci
.
2021
;
28
(
1
):
23
6
.
173.
Agolli
A
,
Yukselen
Z
,
Agolli
O
,
Patel
MH
,
Bhatt
KP
,
Concepcion
L
, et al
.
SARS-CoV-2 effect on male infertility and its possible pathophysiological mechanisms
.
Discoveries
.
2021
;
9
(
2
):
e131
.
174.
Rabie
AM
.
COVID-19 and sexual dysfunction in men: SARS-CoV-2 in the testes
.
Sexologies
.
2021
;
30
(
4
):
e141
8
.
175.
Bechmann
N
,
Maccio
U
,
Kotb
R
,
Dweik
RA
,
Cherfane
M
,
Moch
H
, et al
.
COVID-19 infections in gonads: consequences on fertility
.
Horm Metab Res
.
2022
;
54
(
8
):
549
55
.
176.
Giannakopoulos
S
,
Ward
MA
,
Bakse
J
,
Pak
JH
,
Nerurkar
VR
,
Tallquist
MD
, et al
.
SARS-CoV-2 infection leads to sustained testicular injury and functional impairments in K18 hACE2 mice
.
bioRxiv
.
2023
:
2010
23
.
177.
Jing
Y
,
Run-Qian
L
,
Hao-Ran
W
,
Hao-Ran
C
,
Ya-Bin
L
,
Yang
G
, et al
.
Potential influence of COVID-19/ACE2 on the female reproductive system
.
Mol Hum Reprod
.
2020
;
26
(
6
):
367
73
.
178.
Piomboni
P
,
Luongo
FP
,
Dragoni
F
,
Gentile
M
,
Boccuto
A
,
Boschi
L
, et al
.
P-460 SARS-CoV-2 infection of human ovarian cells: an in vitro model for the detection of the virus entry into the host cells
.
Hum Reprod
.
2022
;
37
(
Suppl1
).
179.
Luongo
FP
,
Dragoni
F
,
Boccuto
A
,
Paccagnini
E
,
Gentile
M
,
Canosi
T
, et al
.
SARS-CoV-2 infection of human ovarian cells: a potential negative impact on female fertility
.
Cells
.
2022
;
11
(
9
):
1431
.
180.
Carp-Veliscu
A
,
Mehedintu
C
,
Frincu
F
,
Bratila
E
,
Rasu
S
,
Iordache
I
, et al
.
The effects of SARS-CoV-2 infection on female fertility: a review of the literature
.
Int J Environ Res Public Health
.
2022
;
19
(
2
):
984
.
181.
Dolgushin
GO
,
Romanov
AY
.
Effects of sars-cov-2 on human reproduction
.
Akusherstvo i Ginekol Russ Fed
.
2020
;
2020
(
11
).
182.
Lee
WY
,
Mok
A
,
Chung
JPW
.
Potential effects of covid-19 on reproductive systems and fertility; assisted reproductive technology guidelines and considerations: a review
.
Hong Kong Med J
.
2021
;
27
(
2
):
118
26
.
183.
Huffman
AM
,
Rezq
S
,
Basnet
J
,
Yanes Cardozo
LL
,
Romero
DG
.
Sars-cov-2 viral entry proteins in hyperandrogenemic female mice: implications for women with pcos and covid-19
.
Int J Mol Sci
.
2021
;
22
(
9
):
4472
.
184.
Saffon
J
,
Moreno-sepulveda
J
,
Checa
MA
,
Espinos
JJ
.
P-466 the effect of SARS-CoV-2 infection or vaccination on controlled ovarian stimulation and in vitro fertilization: a multicenter retrospective cohort study
.
Hum Reprod
.
2023
;
38
(
Suppl1
).
185.
Bentov
Y
,
Beharier
O
,
Moav-Zafrir
A
,
Kabessa
M
,
Godin
M
,
Greenfield
CS
, et al
.
Ovarian follicular function is not altered by SARS-CoV-2 infection or BNT162b2 mRNA COVID-19 vaccination
.
Hum Reprod
.
2021
;
36
(
9
):
2506
13
.
186.
Ata
B
,
Vermeulen
N
,
Mocanu
E
,
Gianaroli
L
,
Lundin
K
,
Rautakallio-Hokkanen
S
, et al
.
SARS-CoV-2, fertility and assisted reproduction
.
Hum Reprod Update
.
2023
;
29
(
2
):
177
96
.
187.
Wang
M
,
Yang
Q
,
Ren
X
,
Hu
J
,
Li
Z
,
Long
R
, et al
.
Investigating the impact of asymptomatic or mild SARS-CoV-2 infection on female fertility and in vitro fertilization outcomes: a retrospective cohort study
.
EClinicalMedicine
.
2021
;
38
:
101013
.
188.
Requena
A
,
Vergara
V
,
González-Ravina
C
,
Ruiz
ME
,
Cruz
M
.
The type of SARS-CoV-2 vaccine does not affect ovarian function in assisted reproduction cycle
.
Fertil Steril
.
2023
;
119
(
4
):
618
23
.
189.
Bravo
VV
,
Cruz
M
,
González
C
,
Ruíz
ME
,
Requena
A
.
P-624 the type of vaccine received against SARS-CoV-2 does not affect ovarian function in an Assisted Reproduction cycle
.
Hum Reprod
.
2022
;
37
(
Suppl1
).
190.
de Lucena
TMC
,
da Silva Santos
AF
,
de Lima
BR
,
de Albuquerque Borborema
ME
,
de Azevêdo Silva
J
.
Mechanism of inflammatory response in associated comorbidities in COVID-19
.
Diabetes Metab Syndr
.
2020
;
14
(
4
):
597
600
.
191.
Martin
JH
,
Head
RE
.
Obesity and COVID-19: renin-angiotensin as a mediator of morbidity and mortality
.
Br J Nutr
.
2022
;
127
(
9
):
1439
40
.
192.
Al Heialy
S
,
Hachim
MY
,
Senok
A
,
Gaudet
M
,
Abou Tayoun
A
,
Hamoudi
R
, et al
.
Regulation of angiotensin- converting enzyme 2 in obesity: implications for COVID-19
.
Front Physiol
.
2020
;
11
:
555039
.
193.
Martínez-Colón
GJ
,
Ratnasiri
K
,
Chen
H
,
Jiang
S
,
Zanley
E
,
Rustagi
A
, et al
.
SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages
.
Sci Transl Med
.
2022
;
14
(
674
):
eabm9151
.
194.
Drożdżyńska
J
,
Jakubowska
W
,
Kemuś
M
,
Krokowska
M
,
Karpezo
K
,
Wiśniewska
M
, et al
.
SARS-CoV-2 and influenza vaccines in people with excessive body mass: a narrative review
.
Life
.
2022
;
12
(
10
):
1617
.
195.
De Bandt
JP
,
Monin
C
.
Obesity, nutrients and the immune system in the era of covid-19
.
Nutrients
.
2021
;
13
(
2
):
610
.
196.
Reiterer
M
,
Rajan
M
,
Gomez-Banoy
N
,
Lau
JD
,
Gómez-Escobar
LG
,
Gilani
A
, et al
.
Hyperglycemia in acute COVID-19 is characterized by adipose tissue dysfunction and insulin resistance
.
SSRN J
.
2021
.
197.
Zhao
L
.
Obesity accompanying COVID-19: the role of epicardial fat
.
Obesity
.
2020
;
28
(
8
):
1367
.
198.
Chang
R
,
Yen-Ting Chen
T
,
Wang
SI
,
Hung
YM
,
Chen
HY
,
Wei
CCJ
.
Risk of autoimmune diseases in patients with COVID-19: a retrospective cohort study
.
EClinicalMedicine
.
2023
;
56
:
101783
.
199.
Peng
K
,
Li
X
,
Yang
D
,
Chan
SCW
,
Zhou
J
,
Wan
EYF
, et al
.
Risk of autoimmune diseases following COVID-19 and the potential protective effect from vaccination: a population-based cohort study
.
EClinicalMedicine
.
2023
;
63
:
102154
.
200.
Rahimmanesh
I
,
Shariati
L
,
Dana
N
,
Esmaeili
Y
,
Vaseghi
G
,
Haghjooy Javanmard
S
.
Cancer occurrence as the upcoming complications of COVID-19
.
Front Mol Biosci
.
2021
;
8
:
813175
.
201.
Hertanto
DM
,
Wiratama
BS
,
Sutanto
H
,
Wungu
CDK
.
Immunomodulation as a potent COVID-19 pharmacotherapy: past, present and future
.
J Inflamm Res
.
2021
;
14
:
3419
28
.
202.
Nickols
NG
,
Goetz
MB
,
Graber
CJ
,
Bhattacharya
D
,
Soo Hoo
G
,
Might
M
, et al
.
Hormonal intervention for the treatment of veterans with COVID-19 requiring hospitalization (HITCH): a multicenter, phase 2 randomized controlled trial of best supportive care vs best supportive care plus degarelix – study protocol for a randomized controlled trial
.
Trials
.
2021
;
22
(
1
):
431
.
You do not currently have access to this content.