Introduction: Neuroendocrine tumors (NETs) are a heterogeneous group of epithelial tumors originating from different anatomical sites, and identifying the gut microbiota and metabolic mechanisms involved in the onset of NETs may help to develop appropriate disease prevention and monitoring strategies. Methods: We employed a mediated two-sample Mendelian randomization (MR) approach, analyzing gut microbiota from German studies and NET datasets from the 10th round of the FinnGen project. Mediation analyses were conducted using the metabolites dataset from the Canadian Longitudinal Study of Aging (CLSA) and the TwinsUK study. Instrumental variables were chosen according to established MR criteria and analyzed using the Wald ratio, inverse-variance weighted (IVW), MR-Egger, and weighted median methods. To ensure robustness, sensitivity analyses were performed using Cochrane’s Q, Egger’s intercept, MR-PRESSO, and leave-one-out methods. Results: Causal relationships were identified between the genetic determinants of 6, 5, 2, 1, 2, 3 gut microbiotas and the risk of colorectal, lung, pancreatic, rectum, small intestine, and stomach NETs. Similarly, the genetic determinants of 4, 6, 1, 5, 10, and 7 metabolites were found to be causally related to the risk of colorectal, lung, pancreatic, rectum, small intestine, and stomach NETs, respectively. Through Wald ratio and IVW methods, we preliminarily identified 957 microbiota-metabolite pairs with significant causal associations and formed 13 mediated relationships between the impact of gut microbiotas on NETs. Conclusion: Our study suggests that gut microbiotas and its derived metabolites may contribute to the onset of NET, offering a novel insight into the disease’s pathogenesis.

Neuroendocrine tumors (NETs) are a rare type of cancer that can develop in different parts of the body, including the intestines, lungs, and pancreas. These tumors are often hard to detect early because they may not cause noticeable symptoms until they have spread to other parts of the body. This study aimed to better understand how certain bacteria in the gut, known as the gut microbiota, and the substances they produce, called metabolites, might influence the development of NETs. To investigate this, we used a method called Mendelian randomization, which helps to identify cause-and-effect relationships by analyzing genetic data. We looked at genetic information from large groups of people to see if there is a link between specific gut bacteria and the risk of developing NETs. We also explored whether certain metabolites produced by these bacteria might play a role in this process. Our findings suggest that some types of gut bacteria and their metabolites may either increase or decrease the risk of NETs, depending on the specific bacteria and metabolites involved. For example, some bacteria were found to protect against certain types of NETs, while others were linked to a higher risk. This research provides new insights into how gut bacteria and their products might contribute to the development of NETs and highlights potential areas for future studies aimed at preventing or treating these tumors.

1.
Rindi
G
,
Mete
O
,
Uccella
S
,
Basturk
O
,
La Rosa
S
,
Brosens
LAA
, et al
.
Overview of the 2022 WHO classification of neuroendocrine neoplasms
.
Endocr Pathol
.
2022
;
33
(
1
):
115
54
.
2.
Das
S
,
Dasari
A
.
Epidemiology, incidence, and prevalence of neuroendocrine neoplasms: are there global differences
.
Curr Oncol Rep
.
2021
;
23
(
4
):
43
.
3.
Kulkarni
R
,
Kabir
I
,
Hodson
J
,
Raza
S
,
Shah
T
,
Pandanaboyana
S
, et al
.
Impact of the extent of resection of neuroendocrine tumor liver metastases on survival: a systematic review and meta-analysis
.
Ann Hepatobiliary Pancreat Surg
.
2022
;
26
(
1
):
31
9
.
4.
Hu
W
,
Chen
ZM
,
Li
XX
,
Lu
L
,
Yang
GH
,
Lei
ZX
, et al
.
Faecal microbiome and metabolic signatures in rectal neuroendocrine tumors
.
Theranostics
.
2022
;
12
(
5
):
2015
27
.
5.
La Salvia
A
,
Lens-Pardo
A
,
López-López
A
,
Carretero-Puche
C
,
Capdevila
J
,
Benavent
M
, et al
.
Metabolomic profile of neuroendocrine tumors identifies methionine, porphyrin, and tryptophan metabolisms as key dysregulated pathways associated with patient survival
.
Eur J Endocrinol
.
2024
;
190
(
1
):
62
74
.
6.
Sekula
P
,
Del Greco M
F
,
Pattaro
C
,
Köttgen
A
.
Mendelian randomization as an approach to assess causality using observational data
.
J Am Soc Nephrol
.
2016
;
27
(
11
):
3253
65
.
7.
Zhang
Z
,
Li
D
,
Xie
F
,
Muhetaer
G
,
Zhang
H
.
The cause-and-effect relationship between gut microbiota abundance and carcinoid syndrome: a bidirectional Mendelian randomization study
.
Front Microbiol
.
2023
;
14
:
1291699
.
8.
Skrivankova
VW
,
Richmond
RC
,
Woolf
BAR
,
Yarmolinsky
J
,
Davies
NM
,
Swanson
SA
, et al
.
Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the STROBE-MR statement
.
Jama
.
2021
;
326
(
16
):
1614
21
.
9.
Forde
A
,
Hemani
G
,
Ferguson
J
.
Review and further developments in statistical corrections for Winner’s Curse in genetic association studies
.
PLoS Genet
.
2023
;
19
(
9
):
e1010546
.
10.
Rühlemann
MC
,
Hermes
BM
,
Bang
C
,
Doms
S
,
Moitinho-Silva
L
,
Thingholm
LB
, et al
.
Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome
.
Nat Genet
.
2021
;
53
(
2
):
147
55
.
11.
Chen
Y
,
Lu
T
,
Pettersson-Kymmer
U
,
Stewart
ID
,
Butler-Laporte
G
,
Nakanishi
T
, et al
.
Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases
.
Nat Genet
.
2023
;
55
(
1
):
44
53
.
12.
Shin
SY
,
Fauman
EB
,
Petersen
AK
,
Krumsiek
J
,
Santos
R
,
Huang
J
, et al
.
An atlas of genetic influences on human blood metabolites
.
Nat Genet
.
2014
;
46
(
6
):
543
50
.
13.
Kurki
MI
,
Karjalainen
J
,
Palta
P
,
Sipilä
TP
,
Kristiansson
K
,
Donner
KM
, et al
.
FinnGen provides genetic insights from a well-phenotyped isolated population
.
Nature
.
2023
;
613
(
7944
):
508
18
.
14.
Sanna
S
,
van Zuydam
NR
,
Mahajan
A
,
Kurilshikov
A
,
Vich Vila
A
,
Võsa
U
, et al
.
Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases
.
Nat Genet
.
2019
;
51
(
4
):
600
5
.
15.
Qin
Y
,
Havulinna
AS
,
Liu
Y
,
Jousilahti
P
,
Ritchie
SC
,
Tokolyi
A
, et al
.
Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort
.
Nat Genet
.
2022
;
54
(
2
):
134
42
.
16.
Burgess
S
,
Thompson
SG
;
CRP CHD Genetics Collaboration
.
Avoiding bias from weak instruments in Mendelian randomization studies
.
Int J Epidemiol
.
2011
;
40
(
3
):
755
64
.
17.
Hemani
G
,
Tilling
K
,
Davey Smith
G
.
Orienting the causal relationship between imprecisely measured traits using GWAS summary data
.
PLoS Genet
.
2017
;
13
(
11
):
e1007081
.
18.
Carter
AR
,
Sanderson
E
,
Hammerton
G
,
Richmond
RC
,
Davey Smith
G
,
Heron
J
, et al
.
Mendelian randomisation for mediation analysis: current methods and challenges for implementation
.
Eur J Epidemiol
.
2021
;
36
(
5
):
465
78
.
19.
Hemani
G
,
Zheng
J
,
Elsworth
B
,
Wade
KH
,
Haberland
V
,
Baird
D
, et al
.
The MR-Base platform supports systematic causal inference across the human phenome
.
Elife
.
2018
;
7
:
7
.
20.
Massironi
S
,
Facciotti
F
,
Cavalcoli
F
,
Amoroso
C
,
Rausa
E
,
Centonze
G
, et al
.
Intratumor microbiome in neuroendocrine neoplasms: a new partner of tumor microenvironment? A pilot study
.
Cells
.
2022
;
11
(
4
):
692
.
21.
Dörffel
Y
,
Swidsinski
A
,
Loening-Baucke
V
,
Wiedenmann
B
,
Pavel
M
.
Common biostructure of the colonic microbiota in neuroendocrine tumors and Crohn’s disease and the effect of therapy
.
Inflamm Bowel Dis
.
2012
;
18
(
9
):
1663
71
.
22.
Mulders
MCF
,
Audhoe
AS
,
Van Koetsveld
PM
,
Feelders
RA
,
Hofland
LJ
,
de Herder
WW
, et al
.
Midgut neuroendocrine tumor patients have a depleted gut microbiome with a discriminative signature
.
Eur J Cancer
.
2024
;
197
:
113472
.
23.
Soldevilla
B
,
López-López
A
,
Lens-Pardo
A
,
Carretero-Puche
C
,
Lopez-Gonzalvez
A
,
La Salvia
A
, et al
.
Comprehensive plasma metabolomic profile of patients with advanced neuroendocrine tumors (NETs). Diagnostic and biological relevance
.
Cancers
.
2021
;
13
(
11
):
2634
.
24.
Imperiale
A
,
Poncet
G
,
Addeo
P
,
Ruhland
E
,
Roche
C
,
Battini
S
, et al
.
Metabolomics of small intestine neuroendocrine tumors and related hepatic metastases
.
Metabolites
.
2019
;
9
(
12
):
300
.
25.
Johansen
SU
,
Hansen
T
,
Nordborg
A
,
Meyer
R
,
Goll
R
,
Florholmen
J
, et al
.
Plasma tryptophan pathway metabolites quantified by liquid chromatography-tandem mass spectrometry as biomarkers in neuroendocrine tumor patients
.
J Neuroendocrinol
.
2024
;
36
(
3
):
e13372
.
26.
Ni
Y
,
Tong
Q
,
Xu
M
,
Gu
J
,
Ye
H
.
Gut microbiota-induced modulation of the central nervous system function in Parkinson’s disease through the gut-brain Axis and short-chain fatty acids
.
Mol Neurobiol
.
2024
:
103092
.
27.
Casertano
M
,
Dekker
M
,
Valentino
V
,
De Filippis
F
,
Fogliano
V
,
Ercolini
D
.
Gaba-producing lactobacilli boost cognitive reactivity to negative mood without improving cognitive performance: a human Double-Blind Placebo-Controlled Cross-Over study
.
Brain Behav Immun
.
2024
;
122
:
256
65
.
28.
Yang
R
,
Qian
L
.
Research on gut microbiota-derived secondary bile acids in cancer progression
.
Integr Cancer Ther
.
2022
;
21
:
15347354221114100
.
29.
Roje
B
,
Zhang
B
,
Mastrorilli
E
,
Kovačić
A
,
Sušak
L
,
Ljubenkov
I
, et al
.
Gut microbiota carcinogen metabolism causes distal tissue tumours
.
Nature
.
2024
;
632
(
8027
):
1137
44
.
30.
Geng
P
,
Qin
W
,
Xu
G
.
Proline metabolism in cancer
.
Amino acids
.
2021
;
53
(
12
):
1769
77
.
31.
Burke
L
,
Guterman
I
,
Palacios Gallego
R
,
Britton
RG
,
Burschowsky
D
,
Tufarelli
C
, et al
.
The Janus-like role of proline metabolism in cancer
.
Cell Death Discov
.
2020
;
6
:
104
.
32.
Kay
EJ
,
Zanivan
S
,
Rufini
A
.
Proline metabolism shapes the tumor microenvironment: from collagen deposition to immune evasion
.
Curr Opin Biotechnol
.
2023
;
84
:
103011
.
33.
D’Aniello
C
,
Patriarca
EJ
,
Phang
JM
,
Minchiotti
G
.
Proline metabolism in tumor growth and metastatic progression
.
Front Oncol
.
2020
;
10
:
776
.
34.
Jing
N
,
Zhang
K
,
Chen
X
,
Liu
K
,
Wang
J
,
Xiao
L
, et al
.
ADORA2A-driven proline synthesis triggers epigenetic reprogramming in neuroendocrine prostate and lung cancers
.
J Clin Invest
.
2023
;
133
(
24
):
e168670
.
35.
Nguyen
SM
,
Tran
HTT
,
Long
J
,
Shrubsole
MJ
,
Cai
H
,
Yang
Y
, et al
.
Gut microbiome in association with chemotherapy-induced toxicities among patients with breast cancer
.
Cancer
.
2024
;
130
(
11
):
2014
30
.
36.
Yang
W
,
Liu
Y
,
Yang
G
,
Meng
B
,
Yi
Z
,
Yang
G
, et al
.
Moderate-intensity physical exercise affects the exercise performance and gut microbiota of mice
.
Front Cell Infect Microbiol
.
2021
;
11
:
712381
.
37.
Meng
R
,
Dong
W
,
Gao
J
,
Lu
C
,
Zhang
C
,
Liao
Q
, et al
.
Clostridium, Bacteroides and Prevotella associates with increased fecal metabolites Trans-4-Hydroxy-L-proline and Genistein in active pulmonary tuberculosis patients during anti-tuberculosis chemotherapy with isoniazid-rifampin-pyrazinamide-ethambutol (HRZE)
.
Indian J Microbiol
.
2022
;
62
(
3
):
374
83
.
You do not currently have access to this content.