Article PDF first page preview

Article PDF first page preview

Introduction: Since the discovery of gonadotropin-inhibitory hormone (GnIH), it has been found to play a critical role in reproduction in vertebrates. Recently, a regulatory role of GnIH in appetite and energy metabolism has emerged, although its precise physiological mechanisms remain unknown. Methods: Thus, the present study evaluated the effects of a single or long-term intraperitoneal GnIH treatment on the food intake, weight, and glucolipid metabolism of chickens, as well as investigating the possible neuroendocrinology factors and mechanisms involved in GnIH-induced obesity and glucolipid metabolism disorder. Results: Our results show that the intraperitoneal administration of GnIH to chickens resulted in a marked body mass increase, hyperlipidemia, hyperglycemia, and glucose intolerance. Subsequently, the results of metabolomics studies and the pharmacological inhibition of the 5-HT2C receptor revealed that blocking the 5-HT2C receptor reinforced the effects of GnIH on food intake, body weight, and blood glucose and lipid levels, resulting in even worse cases of GnIH-induced hyperglycemia, hyperlipidemia, and hepatic lipid deposition. This suggests that, via the 5-HT2C receptor, peripheral 5-HT may act as a negative feedback regulator to interplay with GnIH and jointly control energy balance homeostasis in chickens. Discussion: Our present study provides evidence of cross-talk between GnIH and 5-HT in food intake and energy metabolism at the in vivo pharmacological level, and it proposes a molecular basis for these interactions, suggesting that functional interactions between GnIH and 5-HT may open new avenues for understanding the mechanism of the neuroendocrine network involved in appetite and energy metabolism, as well as providing a new therapeutic strategy to prevent obesity, diabetes, and metabolic disorders.

1.
Singh
P
,
Anjum
S
,
Srivastava
RK
,
Tsutsui
K
,
Krishna
A
.
Central and peripheral neuropeptide RFRP-3: a bridge linking reproduction, nutrition, and stress response
.
Front Neuroendocrinol
.
2022
;
65
:
100979
.
2.
Tsutsui
K
,
Ubuka
T
.
Gonadotropin-inhibitory hormone (GnIH): a new key neurohormone controlling reproductive physiology and behavior
.
Front Neuroendocrinol
.
2021
;
61
:
100900
.
3.
Tsutsui
K
,
Ubuka
T
,
Ukena
K
.
Advancing reproductive neuroendocrinology through research on the regulation of GnIH and on its diverse actions on reproductive physiology and behavior
.
Front Neuroendocrinol
.
2022
;
64
:
100955
.
4.
Ubuka
T
,
Tsutsui
K
.
Reproductive neuroendocrinology of mammalian gonadotropin-inhibitory hormone
.
Reprod Med Biol
.
2019
;
18
(
3
):
225
33
.
5.
McConn
B
,
Wang
G
,
Yi
J
,
Gilbert
ER
,
Osugi
T
,
Ubuka
T
, et al
.
Gonadotropin-inhibitory hormone-stimulation of food intake is mediated by hypothalamic effects in chicks
.
Neuropeptides
.
2014
;
48
(
6
):
327
34
.
6.
Tachibana
T
,
Sato
M
,
Takahashi
H
,
Ukena
K
,
Tsutsui
K
,
Furuse
M
.
Gonadotropin-inhibiting hormone stimulates feeding behavior in chicks
.
Brain Res
.
2005
;
1050
(
1–2
):
94
100
.
7.
Chen
L
,
Zhang
X
,
Song
X
,
Han
D
,
Han
K
,
Xu
W
, et al
.
Peripheral gonadotropin-inhibitory hormone (GnIH) acting as a novel modulator involved in hyperphagia-induced obesity and associated disorders of metabolism in an in vivo female piglet model
.
Int J Mol Sci
.
2022
;
23
(
22
):
13956
.
8.
Huo
K
,
Li
X
,
Hu
W
,
Song
X
,
Zhang
D
,
Zhang
X
, et al
.
RFRP-3, the mammalian ortholog of GnIH, is a novel modulator involved in food intake and glucose homeostasis
.
Front Endocrinol
.
2020
;
11
:
194
.
9.
Luo
R
,
Chen
L
,
Song
X
,
Zhang
X
,
Xu
W
,
Han
D
, et al
.
Possible role of GnIH as a novel link between hyperphagia-induced obesity-related metabolic derangements and hypogonadism in male mice
.
Int J Mol Sci
.
2022
;
23
(
15
):
8066
.
10.
Muzerelle
A
,
Scotto-Lomassese
S
,
Bernard
JF
,
Soiza-Reilly
M
,
Gaspar
P
.
Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5-B9) to the forebrain and brainstem
.
Brain Struct Funct
.
2016
;
221
(
1
):
535
61
.
11.
Jacobs
BL
,
Azmitia
EC
.
Structure and function of the brain serotonin system
.
Physiol Rev
.
1992
;
72
(
1
):
165
229
.
12.
Berger
M
,
Gray
JA
,
Roth
BL
.
The expanded biology of serotonin
.
Annu Rev Med
.
2009
;
60
:
355
66
.
13.
Wyler
SC
,
Lord
CC
,
Lee
S
,
Elmquist
JK
,
Liu
C
.
Serotonergic control of metabolic homeostasis
.
Front Cell Neurosci
.
2017
;
11
:
277
.
14.
Popova
NK
,
Amstislavskaya
TG
.
5-HT2A and 5-HT2C serotonin receptors differentially modulate mouse sexual arousal and the hypothalamo-pituitary-testicular response to the presence of a female
.
Neuroendocrinology
.
2002
;
76
(
1
):
28
34
.
15.
Gorzalka
BB
,
Brotto
LA
,
Hong
JJ
.
Corticosterone regulation of 5-HT2A receptor-mediated behaviors: attenuation by melatonin
.
Physiol Behav
.
1999
;
67
(
3
):
439
42
.
16.
Pieścikowska
I
,
Klein
P
,
Lukaszyk
A
,
Górska-Rafińska
L
,
Balcerek
M
,
Ludwiczak
H
.
Ketanserin, an antagonist of 5-HT2A receptor of serotonin, inhibits testosterone secretion by rat Leydig cells in vitro
.
Folia Histochem Cytobiol
.
1999
;
37
(
3
):
223
4
.
17.
Georgescu
T
,
Lyons
D
,
Heisler
LK
.
Role of serotonin in body weight, insulin secretion and glycaemic control
.
J Neuroendocrinol
.
2021
;
33
(
4
):
e12960
.
18.
McConn
BR
,
Yi
J
,
Gilbert
ER
,
Siegel
PB
,
Chowdhury
VS
,
Furuse
M
, et al
.
Stimulation of food intake after central administration of gonadotropin-inhibitory hormone is similar in genetically selected low and high body weight lines of chickens
.
Gen Comp Endocrinol
.
2016
;
232
:
96
100
.
19.
Chen
S
,
Lu
Z
,
Jia
H
,
Yang
B
,
Liu
C
,
Yang
Y
, et al
.
Hepatocyte-specific Mas activation enhances lipophagy and fatty acid oxidation to protect against acetaminophen-induced hepatotoxicity in mice
.
J Hepatol
.
2023
;
78
(
3
):
543
57
.
20.
Clarke
IJ
,
Smith
JT
,
Henry
BA
,
Oldfield
BJ
,
Stefanidis
A
,
Millar
RP
, et al
.
Gonadotropin-inhibitory hormone is a hypothalamic peptide that provides a molecular switch between reproduction and feeding
.
Neuroendocrinology
.
2012
;
95
(
4
):
305
16
.
21.
Li
X
,
Su
J
,
Fang
R
,
Zheng
L
,
Lei
R
,
Wang
X
, et al
.
The effects of RFRP-3, the mammalian ortholog of GnIH, on the female pig reproductive axis in vitro
.
Mol Cell Endocrinol
.
2013
;
372
(
1–2
):
65
72
.
22.
Wang
X
,
Li
X
,
Hu
C
.
RFRP-3, the mammalian ortholog of GnIH, induces cell cycle arrest at G2/M in porcine ovarian granulosa cells
.
Peptides
.
2018
;
101
:
106
11
.
23.
Allison
KC
,
Hopkins
CM
,
Ruggieri
M
,
Spaeth
AM
,
Ahima
RS
,
Zhang
Z
, et al
.
Prolonged, controlled daytime versus delayed eating impacts weight and metabolism
.
Curr Biol
.
2021
;
31
(
4
):
908
657.e3
.
24.
Jacobi
JS
,
Coleman
HA
,
Enriori
PJ
,
Parkington
HC
,
Li
Q
,
Pereira
A
, et al
.
Paradoxical effect of gonadotrophin-inhibiting hormone to negatively regulate neuropeptide Y neurones in mouse arcuate nucleus
.
J Neuroendocrinol
.
2013
;
25
(
12
):
1308
17
.
25.
Jiang
P
,
Turek
FW
.
Timing of meals: when is as critical as what and how much
.
Am J Physiol Endocrinol Metab
.
2017
;
312
(
5
):
E369
80
.
26.
Paoli
A
,
Tinsley
G
,
Bianco
A
,
Moro
T
.
The influence of meal frequency and timing on health in humans: the role of fasting
.
Nutrients
.
2019
;
11
(
4
):
719
.
27.
Rizwan
MZ
,
Poling
MC
,
Corr
M
,
Cornes
PA
,
Augustine
RA
,
Quennell
JH
, et al
.
RFamide-related peptide-3 receptor gene expression in GnRH and kisspeptin neurons and GnRH-dependent mechanism of action
.
Endocrinology
.
2012
;
153
(
8
):
3770
9
.
28.
Anjum
S
,
Khattak
MNK
,
Tsutsui
K
,
Krishna
A
.
RF-amide related peptide-3 (RFRP-3): a novel neuroendocrine regulator of energy homeostasis, metabolism, and reproduction
.
Mol Biol Rep
.
2021
;
48
(
2
):
1837
52
.
29.
Moriwaki
S
,
Narimatsu
Y
,
Fukumura
K
,
Iwakoshi-Ukena
E
,
Furumitsu
M
,
Ukena
K
.
Effects of chronic intracerebroventricular infusion of RFamide-related peptide-3 on energy metabolism in male mice
.
Int J Mol Sci
.
2020
;
21
(
22
):
8606
.
30.
Cázarez-Márquez
F
,
Eliveld
J
,
Ritsema
WIGR
,
Foppen
E
,
Bossenbroek
Y
,
Pelizzari
S
, et al
.
Role of central kisspeptin and RFRP-3 in energy metabolism in the male Wistar rat
.
J Neuroendocrinol
.
2021
;
33
(
7
):
e12973
.
31.
Kairupan
TS
,
Amitani
H
,
Cheng
KC
,
Runtuwene
J
,
Asakawa
A
,
Inui
A
.
Role of gastrointestinal hormones in feeding behavior and obesity treatment
.
J Gastroenterol
.
2016
;
51
(
2
):
93
103
.
32.
Davidson
MB
.
Pathogenesis of impaired glucose tolerance and type II diabetes mellitus--current status
.
West J Med
.
1985
;
142
(
2
):
219
29
.
33.
Rivas
AM
,
Nugent
K
.
Hyperglycemia, insulin, and insulin resistance in sepsis
.
Am J Med Sci
.
2021
;
361
(
3
):
297
302
.
34.
Sharma
R
,
Tiwari
S
.
Renal gluconeogenesis in insulin resistance: a culprit for hyperglycemia in diabetes
.
World J Diabetes
.
2021
;
12
(
5
):
556
68
.
35.
Klover
PJ
,
Mooney
RA
.
Hepatocytes: critical for glucose homeostasis
.
Int J Biochem Cell Biol
.
2004
;
36
(
5
):
753
8
.
36.
Könner
AC
,
Brüning
JC
.
Selective insulin and leptin resistance in metabolic disorders
.
Cell Metab
.
2012
;
16
(
2
):
144
52
.
37.
Blais
A
,
Drouin
G
,
Chaumontet
C
,
Voisin
T
,
Couvelard
A
,
Even
PC
, et al
.
Impact of orexin-A treatment on food intake, energy metabolism and body weight in mice
.
PLoS One
.
2017
;
12
(
1
):
e0169908
.
38.
Koenig
JI
.
The 1999 neuroendocrine workshop on food intake, energy metabolism and obesity, San Diego, CA, USA, 9-11 june 1999
.
Trends Endocrinol Metab
.
1999
;
10
(
10
):
420
2
.
39.
Tolson
KP
,
Garcia
C
,
Yen
S
,
Simonds
S
,
Stefanidis
A
,
Lawrence
A
, et al
.
Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity
.
J Clin Invest
.
2014
;
124
(
7
):
3075
9
.
40.
Gao
Q
,
Horvath
TL
.
Neurobiology of feeding and energy expenditure
.
Annu Rev Neurosci
.
2007
;
30
:
367
98
.
41.
Tena-Sempere
M
.
Interaction between energy homeostasis and reproduction: central effects of leptin and ghrelin on the reproductive axis
.
Horm Metab Res
.
2013
;
45
(
13
):
919
27
.
42.
Timper
K
,
Brüning
JC
.
Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity
.
Dis Model Mech
.
2017
;
10
(
6
):
679
89
.
43.
Migliarini
B
,
Piccinetti
CC
,
Martella
A
,
Maradonna
F
,
Gioacchini
G
,
Carnevali
O
.
Perspectives on endocrine disruptor effects on metabolic sensors
.
Gen Comp Endocrinol
.
2011
;
170
(
3
):
416
23
.
44.
El-Merahbi
R
,
Löffler
M
,
Mayer
A
,
Sumara
G
.
The roles of peripheral serotonin in metabolic homeostasis
.
FEBS Lett
.
2015
;
589
(
15
):
1728
34
.
45.
Jones
LA
,
Sun
EW
,
Martin
AM
,
Keating
DJ
.
The ever-changing roles of serotonin
.
Int J Biochem Cell Biol
.
2020
;
125
:
105776
.
46.
Matthes
S
,
Bader
M
.
Peripheral serotonin synthesis as a new drug target
.
Trends Pharmacol Sci
.
2018
;
39
(
6
):
560
72
.
47.
Saadoun
A
,
Cabrera
MC
.
Effect of the 5-HT(1A) receptor agonist 8-OH-DPAT on food and water intake in chickens
.
Physiol Behav
.
2002
;
75
(
3
):
271
5
.
48.
van Galen
KA
,
Ter Horst
KW
,
Serlie
MJ
.
Serotonin, food intake, and obesity
.
Obes Rev
.
2021
;
22
(
7
):
e13210
.
49.
Denbow
DM
,
Van Krey
HP
,
Cherry
JA
.
Feeding and drinking response of young chicks to injections of serotonin into the lateral ventricle of the brain
.
Poult Sci
.
1982
;
61
(
1
):
150
5
.
50.
Denbow
DM
,
Van Krey
HP
,
Lacy
MP
,
Dietrick
TJ
.
Feeding, drinking and body temperature of Leghorn chicks: effects of ICV injections of biogenic amines
.
Physiol Behav
.
1983
;
31
(
1
):
85
90
.
51.
Lacy
MP
,
Van Krey
HP
,
Skewes
PA
,
Denbow
DM
.
Tryptophan’s influence on feeding and body temperature in the fowl
.
Poult Sci
.
1986
;
65
(
6
):
1193
6
.
52.
Tecott
LH
,
Sun
LM
,
Akana
SF
,
Strack
AM
,
Lowenstein
DH
,
Dallman
MF
, et al
.
Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors
.
Nature
.
1995
;
374
(
6522
):
542
6
.
53.
Hartfield
AW
,
Moore
NA
,
Clifton
PG
.
Serotonergic and histaminergic mechanisms involved in intralipid drinking
.
Pharmacol Biochem Behav
.
2003
;
76
(
2
):
251
8
.
54.
Beczkowska
IW
,
Bodnar
RJ
.
Naloxone and serotonin receptor subtype antagonists: interactive effects upon deprivation-induced intake
.
Pharmacol Biochem Behav
.
1991
;
38
(
3
):
605
10
.
55.
Schuhler
S
,
Clark
A
,
Joseph
W
,
Patel
A
,
Lehnen
K
,
Stratford
E
, et al
.
Involvement of 5-HT receptors in the regulation of food intake in Siberian hamsters
.
J Neuroendocrinol
.
2005
;
17
(
5
):
276
85
.
56.
Simansky
KJ
.
Serotonergic control of the organization of feeding and satiety
.
Behav Brain Res
.
1996
;
73
(
1–2
):
37
42
.
57.
Ward
SJ
,
Lefever
TW
,
Rawls
SM
,
Whiteside
GT
,
Walker
EA
.
Age-dependent effects of the cannabinoid CB1 antagonist SR141716A on food intake, body weight change, and pruritus in rats
.
Psychopharmacol Berl
.
2009
;
206
(
1
):
155
65
.
58.
Sugimoto
Y
,
Yamada
J
,
Yoshikawa
T
,
Noma
T
,
Horisaka
K
.
Effects of peripheral 5-HT2 and 5-HT3 receptor agonists on food intake in food-deprived and 2-deoxy-D-glucose-treated rats
.
Eur J Pharmacol
.
1996
;
316
(
1
):
15
21
.
59.
Yamada
J
,
Sugimoto
Y
,
Kimura
I
,
Takeuchi
N
,
Horisaka
K
.
Serotonin-induced hypoglycemia and increased serum insulin levels in mice
.
Life Sci
.
1989
;
45
(
20
):
1931
6
.
60.
Beretta-Piccoli
C
,
Salvadé
G
,
Bachmann
C
,
Riesen
W
,
Zuppinger
K
.
Antihypertensive and metabolic effects of ketanserin in diabetic patients with mild hypertension
.
J Hum Hypertens
.
1988
;
2
(
2
):
103
10
.
61.
Watanabe
H
,
Saito
R
,
Nakano
T
,
Takahashi
H
,
Takahashi
Y
,
Sumiyoshi
K
, et al
.
Effect of peripheral 5-HT on glucose and lipid metabolism in wether sheep
.
PLoS One
.
2014
;
9
(
2
):
e88058
.
62.
Nonogaki
K
,
Strack
AM
,
Dallman
MF
,
Tecott
LH
.
Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene
.
Nat Med
.
1998
;
4
(
10
):
1152
6
.
63.
Zhou
L
,
Sutton
GM
,
Rochford
JJ
,
Semple
RK
,
Lam
DD
,
Oksanen
LJ
, et al
.
Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways
.
Cell Metab
.
2007
;
6
(
5
):
398
405
.
64.
Frank
A
,
Brown
LM
,
Clegg
DJ
.
The role of hypothalamic estrogen receptors in metabolic regulation
.
Front Neuroendocrinol
.
2014
;
35
(
4
):
550
7
.
65.
Matsumoto
C
,
Yamada
C
,
Sadakane
C
,
Nahata
M
,
Hattori
T
,
Takeda
H
.
Psychological stress in aged female mice causes acute hypophagia independent of central serotonin 2C receptor activation
.
PLoS One
.
2017
;
12
(
11
):
e0187937
.
66.
Memon
RA
,
Tecott
LH
,
Nonogaki
K
,
Beigneux
A
,
Moser
AH
,
Grunfeld
C
, et al
.
Up-regulation of peroxisome proliferator-activated receptors (PPAR-alpha) and PPAR-gamma messenger ribonucleic acid expression in the liver in murine obesity: troglitazone induces expression of PPAR-gamma-responsive adipose tissue-specific genes in the liver of obese diabetic mice
.
Endocrinology
.
2000
;
141
(
11
):
4021
31
.
67.
He
W
,
Barak
Y
,
Hevener
A
,
Olson
P
,
Liao
D
,
Le
J
, et al
.
Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle
.
Proc Natl Acad Sci USA
.
2003
;
100
(
26
):
15712
7
.
68.
Lee
E
,
Korf
H
,
Vidal-Puig
A
.
An adipocentric perspective on the development and progression of non-alcoholic fatty liver disease
.
J Hepatol
.
2023
;
78
(
5
):
1048
62
.
69.
Choi
W
,
Namkung
J
,
Hwang
I
,
Kim
H
,
Lim
A
,
Park
HJ
, et al
.
Serotonin signals through a gut-liver axis to regulate hepatic steatosis
.
Nat Commun
.
2018
;
9
(
1
):
4824
.
You do not currently have access to this content.