Background/Aims: The antihyperglycaemic drug metformin reduces food consumption through mechanisms that are not fully elucidated. The present study investigated the effects of intracerebroventricular administration of metformin on food intake and hypothalamic appetite-regulating signalling pathways induced by the orexigenic peptide ghrelin. Methods: Rats were injected intracerebroventricularly with ghrelin (5 µg), metformin (50, 100 or 200 µg), 5-amino-imidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR, 25 µg) and L-leucine (1 µg) in different combinations. Food intake was monitored during the next 4 h. Hypothalamic activation of AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), regulatory-associated protein of mTOR (Raptor), mammalian target of rapamycin (mTOR) and p70 S6 kinase 1 (S6K) after 1 h of treatment was analysed by immunoblotting. Results: Metformin suppressed the increase in food consumption induced by intracerebroventricular ghrelin in a dose-dependent manner. Ghrelin increased phosphorylation of hypothalamic AMPK and its targets ACC and Raptor, which was associated with the reduced phosphorylation of mTOR. The mTOR substrate, S6K, was activated by intracerebroventricular ghrelin despite the inhibition of mTOR. Metformin treatment blocked ghrelin-induced activation of hypothalamic AMPK/ACC/Raptor and restored mTOR activity without affecting S6K phosphorylation. Metformin also reduced food consumption induced by the AMPK activator AICAR while the ghrelin-triggered food intake was inhibited by the mTOR activator L-leucine. Conclusion: Metformin could reduce food intake by preventing ghrelin-induced AMPK signalling and mTOR inhibition in the hypotalamus.

1.
Correia S, Carvalho C, Santos MS, Seiça R, Oliveira CR, Moreira PI: Mechanisms of action of metformin in type 2 diabetes and associated complications: an overview. Mini Rev Med Chem 2008;8:1343–1354.
2.
Golay A: Metformin and body weight. Int J Obes (Lond) 2008;32:61–72.
3.
Borst SE, Snellen HG, Lai HL: Metformin treatment enhances insulin-stimulated glucose transport in skeletal muscle of Sprague-Dawley rats. Life Sci 2000;67:165–174.
4.
Glueck CJ, Fontaine RN, Wang P, Subbiah MT, Weber K, Illig E, Streicher P, Sieve-Smith L, Tracy TM, Lang JE, McCullough P: Metformin reduces weight, centripetal obesity, insulin, leptin, and low-density lipoprotein cholesterol in nondiabetic, morbidly obese subjects with body mass index greater than 30. Metabolism 2001;50:856–861.
5.
Kumar VB, Bernardo AE, Vyas K, Franko M, Farr S, Lakshmanan L, Buddhiraju C, Morley JE: Effect of metformin on nitric oxide synthase in genetically obese (ob/ob) mice. Life Sci 2001;69:2789–2799.
6.
Lee A, Morley JE: Metformin decreases food consumption and induces weight loss in subjects with obesity with type II non-insulin-dependent diabetes. Obes Res 1998;6:47–53.
7.
Matsui Y, Hirasawa Y, Sugiura T, Toyoshi T, Kyuki K, Ito M: Metformin reduces body weight gain and improves glucose intolerance in high-fat diet-fed C57BL/6J mice. Biol Pharm Bull 2010;33:963–970.
8.
Paolisso G, Amato L, Eccellente R, Gambardella A, Tagliamonte MR, Varricchio G, Carella C, Giugliano D, D’Onofrio F: Effect of metformin on food intake in obese subjects. Eur J Clin Invest 1998;28:441–446.
9.
Rouru J, Huupponen R, Pesonen U, Koulu M: Subchronic treatment with metformin produces anorectic effect and reduces hyperinsulinemia in genetically obese Zucker rats. Life Sci 1992;50:1813–1820.
10.
Łabuzek K, Suchy D, Gabryel B, Bielecka A, Liber S, Okopień B: Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol Rep 2010;62:956–965.
11.
Kim YW, Kim JY, Park YH, Park SY, Won KC, Choi KH, Huh JY, Moon KH: Metformin restores leptin sensitivity in high-fat-fed obese rats with leptin resistance. Diabetes 2006;55:716–724.
12.
Aubert G, Mansuy V, Voirol MJ, Pellerin L, Pralong FP: The anorexigenic effects of metformin involve increases in hypothalamic leptin receptor expression. Metabolism 2010;60:327–334.
13.
Chau-Van C, Gamba M, Salvi R, Gaillard RC, Pralong FP: Metformin inhibits adenosine 5′-monophosphate-activated kinase activation and prevents increases in neuropeptide Y expression in cultured hypothalamic neurons. Endocrinology 2007;148:507–511.
[PubMed]
14.
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE: Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001;108:1167–1174.
[PubMed]
15.
Hardie DG: AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes (Lond) 2008;32(suppl 4):S7–S12.
16.
Harada S, Fujita-Hamabe W, Tokuyama S: The importance of regulation of blood glucose levels through activation of peripheral 5′-AMP-activated protein kinase on ischemic neuronal damage. Brain Res 2010;1351:254–263.
17.
Druce MR, Wren AM, Park AJ, Milton JE, Patterson M, Frost G, Ghatei MA, Small C, Bloom SR: Ghrelin increases food intake in obese as well as lean subjects. Int J Obes (Lond) 2005;29:1130–1136.
[PubMed]
18.
Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S: A role for ghrelin in the central regulation of feeding. Nature 2001;409:194–198.
[PubMed]
19.
Tang-Christensen M, Vrang N, Ortmann S, Bidlingmaier M, Horvath TL, Tschöp M: Central administration of ghrelin and agouti-related protein (83–132) increases food intake and decreases spontaneous locomotor activity in rats. Endocrinology 2004;145:4645–4652.
[PubMed]
20.
Tschöp M, Smiley DL, Heiman ML: Ghrelin induces adiposity in rodents. Nature 2000;407:908–913.
[PubMed]
21.
Chen HY, Trumbauer ME, Chen AS, Weingarth DT, Adams JR, Frazier EG, Shen Z, Marsh DJ, Feighner SD, Guan XM, Ye Z, Nargund RP, Smith RG, Van der Ploeg LH, Howard AD, MacNeil DJ, Qian S: Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology 2004;145:2607–2612.
[PubMed]
22.
Kola B, Hubina E, Tucci SA, Kirkham TC, Garcia EA, Mitchell SE, Williams LM, Hawley SA, Hardie DG, Grossman AB, Korbonits M: Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem 2005;280:25196–25201.
[PubMed]
23.
Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, Carling D, Small CJ: AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 2004;279:12005–12008.
[PubMed]
24.
Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferré P, Birnbaum MJ, Stuck BJ, Kahn BB: AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004;428:569–574.
[PubMed]
25.
Shaw RJ: LKB1 and AMP-activated protein kinase control of mTOR signaling and growth. Acta Physiol (Oxf) 2009;196:65–80.
[PubMed]
26.
Blouet C, Ono H, Schwartz GJ: Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metab 2008;8:459–467.
27.
Cota D, Matter EK, Woods SC, Seeley RJ: The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. J Neurosci 2008;28:7202–7208.
[PubMed]
28.
Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ: Hypothalamic mTOR signaling regulates food intake. Science 2006;312:927–930.
[PubMed]
29.
Doogue MP, Begg EJ, Moore MP, Lunt H, Pemberton CJ, Zhang M: Metformin increases plasma ghrelin in type 2 diabetes. Br J Clin Pharmacol 2009;68:875–882.
30.
Starcevic VP, Morrow BA, Farner LA, Keil LC, Severs WB: Long-term recording of cerebrospinal fluid pressure in freely behaving rats. Brain Res 1988;462:112–117.
[PubMed]
31.
Petersen JS, DiBona GF: Acute sympathoinhibitory actions of metformin in spontaneously hypertensive rats. Hypertension 1996;27:619–625.
[PubMed]
32.
Morrison CD, Xi X, White CL, Ye J, Martin RJ: Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism. Am J Physiol Endocrinol Metab 2007;293:E165–E171.
[PubMed]
33.
Anderson KA, Ribar TJ, Lin F, Noeldner PK, Green MF, Muehlbauer MJ, Witters LA, Kemp BE, Means AR: Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab 2008;7:377–388.
[PubMed]
34.
Kohno D, Gao HZ, Muroya S, Kikuyama S, Yada T: Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. Diabetes 2003;52:948–956.
[PubMed]
35.
Velásquez DA, Martínez G, Romero A, Vázquez MJ, Boit KD, Dopeso-Reyes IG, López M, Vidal A, Nogueiras R, Diéguez C: The central Sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin. Diabetes 2011;60:1177–1185.
36.
Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, Friedman JM, Horvath TL: Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 2004;304:110–115.
[PubMed]
37.
Potter WB, O’Riordan KJ, Barnett D, Osting SM, Wagoner M, Burger C, Roopra A: Metabolic regulation of neuronal plasticity by the energy sensor AMPK. PLoS One 2010;5:e8996.
[PubMed]
38.
Williams T, Courchet J, Viollet B, Brenman JE, Polleux F: AMP-activated protein kinase (AMPK) activity is not required for neuronal development but regulates axogenesis during metabolic stress. Proc Natl Acad Sci USA 2011;108:5849–5854.
39.
Villanueva EC, Münzberg H, Cota D, Leshan RL, Kopp K, Ishida-Takahashi R, Jones JC, Fingar DC, Seeley RJ, Myers MG Jr: Complex regulation of mammalian target of rapamycin complex 1 in the basomedial hypothalamus by leptin and nutritional status. Endocrinology 2009;150:4541–4551.
40.
Moesgaard SG, Ahrén B, Carr RD, Gram DX, Brand CL, Sundler F: Effects of high-fat feeding and fasting on ghrelin expression in the mouse stomach. Regul Pept 2004;120:261–267.
[PubMed]
41.
Toshinai K, Date Y, Murakami N, Shimada M, Mondal MS, Shimbara T, Guan JL, Wang QP, Funahashi H, Sakurai T, Shioda S, Matsukura S, Kangawa K, Nakazato M: Ghrelin-induced food intake is mediated via the orexin pathway. Endocrinology 2003;144:1506–1512.
[PubMed]
42.
Jaeschke A, Hartkamp J, Saitoh M, Roworth W, Nobukuni T, Hodges A, Sampson J, Thomas G, Lamb R: Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J Cell Biol 2002;159:217–224.
[PubMed]
43.
Andrews ZB, Liu ZW, Walllingford N, Erion DM, Borok E, Friedman JM, Tschöp MH, Shanabrough M, Cline G, Shulman GI, Coppola A, Gao XB, Horvath TL, Diano S: UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature 2008;454:846–851.
[PubMed]
44.
López M, Lage R, Saha AK, Pérez-Tilve D, Vázquez MJ, Varela L, Sangiao-Alvarellos S, Tovar S, Raghay K, Rodríguez-Cuenca S, Deoliveira RM, Castañeda T, Datta R, Dong JZ, Culler M, Sleeman MW, Alvarez CV, Gallego R, Lelliott CJ, Carling D, Tschöp MH, Diéguez C, Vidal-Puig A: Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab 2008;7:389–399.
[PubMed]
45.
Lage R, Vázquez MJ, Varela L, Saha AK, Vidal-Puig A, Nogueiras R, Diéguez C, López M: Ghrelin effects on neuropeptides in the rat hypothalamus depend on fatty acid metabolism actions on BSX but not on gender. FASEB J 2010;24:2670–2679.
46.
Rouru J, Pesonen U, Koulu M, Huupponen R, Santti E, Virtanen K, Rouvari T, Jhanwar-Uniyal M: Anorectic effect of metformin in obese Zucker rats: lack of evidence for the involvement of neuropeptide Y. Eur J Pharmacol 1995;273:99–106.
47.
Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, Furlong TJ, Greenfield JR, Greenup LC, Kirkpatrick CM, Ray JE, Timmins P, Williams KM: Clinical pharmacokinetics of metformin. Clin Pharmacokinet 2011;50:81–98.
You do not currently have access to this content.