The nervous system plays a key role in the regulation of neuroendocrine axes and, in turn, the released neurohormones modulate the activity of different brain regions. Neurodegenerative diseases, which are known to affect specific neuronal populations, may provoke neuroendocrine dysfunctions that alter the intimate relationship between both systems. In addition, these modifications may influence the progression of the neurodegenerative process. In the present review, we summarise some of the endocrine changes characterising three major neurodegenerative diseases: Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Special attention is focused on the contribution of disease transgenic models to elucidate such alterations.

Mandelkow EM, Mandelkow E: Tau in Alzheimer’s disease. Trends Cell Biol 1998;8:425–427.
Mills J, Reiner PB: Regulation of amyloid precursor protein cleavage. J Neurochem 1999;72:443–460.
Hyman BT, Van Horsen GW, Damasio AR, Barnes CL: Alzheimer’s disease: Cell-specific pathology isolates the hippocampal formation. Science 1984;225:1168–1170.
Gomez-Isla T, Price JL, McKeel DW Jr, Morris JC, Growdon JH, Hyman BT: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 1996;16:4491–4500.
Morrison JH, Hof PR: Life and death of neurons in the aging brain. Science 1997;278:412–419.
Reilly JF, Games D, Rydel RE, Freedman S, Schenk D, Young WG, Morrison JH, Bloom FE: Amyloid deposition in the hippocampus and entorhinal cortex: quantitative analysis of a transgenic mouse model. Proc Natl Acad Sci USA 2003;100:4837–4842.
Sisodia SS, Martin LJ, Walker LC, Borchelt DR, Price DL: Cellular and molecular biology of Alzheimer’s disease and animal models. Neurodegen Dis 1995;5:59–68.
Rocchi A, Pellegrini S, Siciliano G, Murri L: Causative and susceptibility genes for Alzheimer’s disease: A review. Brain Res Bull 2003;61:1–24.
Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, et al: Alzheimer-type neuropathology in transgenic mice overexpressing V717 β-amyloid precursor protein. Nature 1995;373:523–527.
Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G: Correlative memory deficits: A beta elevation, and amyloid plaques in transgenic mice. Science 1996;274:99–102.
Moechars D, Lorent K, De Strooper B, Dewachter I, Van Leuven F: Expression in brain of amyloid precursor protein mutated in the alpha-secretase site causes disturbed behavior, neuronal degeneration and premature death in transgenic mice. EMBO J 1996;15:1265–1274.
Irizarry MC, Soriano F, McNamara M, Page KJ, Schenk D, Games D, Hyman BT: Aβ deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci 1997;17:7053–7059.
Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Burki K, Frey P, Paganetti PA, Waridel C, Calhoun ME, Jucker M, Probst A, Staufenbiel M, Sommer B: Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 1997;94:13287–13292.
Stalder M, Phinney A, Probst A, Sommer B, Staufenbiel M, Jucker M: Association of microglia with amyloid plaques in brains of APP23 transgenic mice. Am J Pathol 1999;154:1673–1684.
Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, Gwinn-Hardy K, Paul Murphy M, Baker M, Yu X, Duff K, Hardy J, Corral A, Lin WL, Yen SH, Dickson DW, Davies P, Hutton M: Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 2000;25:402–405.
Götz J, Chen F, Barmettler R, Nitsch RM: Tau filament formation in transgenic mice expressing P301L tau. J Biol Chem 2001;276:529–534.
Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-tur J, Hutton M, Buee L, Harigaya Y, Yager D, Morgan D, Gordon MH, Holcomb L, Refolo L, Zenk B, Hardy J, Younkin S: Increased amyloid-β42(43) in brains of mice expressing mutant presenilin 1. Nature 1996;383:710–713.
Borchelt DR, Ratovitski T, van Lare J, Lee MK, Gonzales V, Jenkins NA, Copeland NG, Price DL, Sisodia SS: Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 1997;19:939–945.
Oyama F, Sawamura N, Kobayashi K, Morishima-Kawashima M, Kuramochi T, Ito M, Tomita T, Maruyama K, Saido TC, Iwatsubo T, Capell A, Walter J, Grunberg J, Ueyama Y, Haass C, Ihara Y: Mutant presenilin 2 transgenic mouse: Effect on an age-dependent increase of amyloid β-protein 42 in the brain. J Neurochem 1998;71:313–322.
Bowman BH, Jansen L, Yang F, Adrian GS, Zhao M, Atherton SS, Buchanan JM, Greene R, Walter C, Herbert DC, et al: Discovery of a brain promoter from the human transferrin gene and its utilization for development of transgenic mice that express human apolipoprotein E alleles. Proc Natl Acad Sci USA 1995;92:12115–12119.
Sun Y, Wu S, Bu G, Onifade MK, Patel SN, LaDu MJ, Fagan AM, Holtzman DM: Glial fibrillary acidic protein-apolipoprotein E (apoE) transgenic mice: astrocyte-specific expression and differing biological effects of astrocyte-secreted apoE3 and apoE4 lipoproteins. J Neurosci 1998;18:3261–3272.
Aguilera G: Regulation of pituitary ACTH secretion during chronic stress. Front Neuroendocrinol 1994;15:321–350.
Hatzinger M, Z’Brun A, Hemmeter U, Seifritz E, Baumann F, Holsboer-Trachsler E, Heuser IJ: Hypothalamic-ituitary-adrenal system function in patients with Alzheimer’s disease. Neurobiol Aging 1995;16:205–209.
Nasman B, Olsson T, Viitanen M, Carlstrom K: A subtle disturbance in the feedback regulation of the hypothalamic-pituitary-adrenal axis in the early phase of Alzheimer’s disease. Psychoneuroendocrinology 1995;20:211–220.
O’Brien JT, Ames D, Schweitzer I, Mastwyk M, Colman P: Enhanced adrenal sensitivity to adrenocorticotrophic hormone (ACTH) is evidence of HPA axis hyperactivity in Alzheimer’s disease. Psychol Med 1996;26:7–14.
Weiner MF, Vobach S, Olsson K, Svetlik D, Risser RC: Cortisol secretion and Alzheimer’s disease progression. Biol Psychiatry 1997;42:1030–1038.
Rasmuson S, Andrew R, Nasman B, Seckl JR, Walker BR, Olsson T: Increased glucocorticoid production and altered cortisol metabolism in women with mild to moderate Alzheimer’s disease. Biol Psychiatry 2001;49:547–552.
Lesch KP, Ihl R, Frolich L, Rupprecht R, Muller U, Schulte HM, Maurer K: Endocrine responses to growth hormone releasing hormone and corticotropin releasing hormone in early-onset Alzheimer’s disease. Psychiatry Res 1990;33:107–112.
Nasman B, Olsson T, Fagerlund M, Eriksson S, Viitanen M, Carlstrom K: Blunted adrenocorticotropin and increased adrenal steroid response to human corticotropin-releasing hormone in Alzheimer’s disease. Biol Psychiatry 1996;39:311–318.
Pedersen WA, Culmsee C, Ziegler D, Herman JP, Mattson MP: Aberrant stress response associated with severe hypoglycemia in a transgenic mouse model of Alzheimer’s disease. J Mol Neurosci 1999;13:159–165.
Young EA, Vazquez D: Hypercortisolemia, hippocampal glucocorticoid receptors, and fast feedback. Mol Psychiatry 1996;1:149–159.
Wittenberg GM, Tsien JZ: An emerging molecular and cellular framework for memory processing by the hippocampus. Trends Neurosci 2002;25:501–505.
Kim JJ, Yoon KS: Stress: metaplastic effects in the hippocampus. Trends Neurosci 1998;21:505–509.
Gurevich D, Siegel B, Dumlao M, Perl E, Chaitin P, Bagne C, Oxenkrug G: HPA axis responsivity to dexamethasone and cognitive impairment in dementia. Prog Neuropsychopharmacol Biol Psychiatry 1990;14:297–308.
O’Brien JT, Ames D, Schweitzer I, Colman P, Desmond P, Tress B: Clinical and magnetic resonance imaging correlates of hypothalamic-pituitary-adrenal axis function in depression and Alzheimer’s disease. Br J Psychiatry 1996;168:679–687.
Ferrari E, Arcaini A, Gornati R, Pelanconi L, Cravello L, Fioravanti M, Solerte SB, Magri F: Pineal and pituitary-adrenocortical function in physiological aging and in senile dementia. Exp Gerontol 2000;35:1239–1250.
Pedersen WA, McCullers D, Culmsee C, Haughey NJ, Herman JP, Mattson MP: Corticotropin-releasing hormone protects neurons against insults relevant to the pathogenesis of Alzheimer’s disease. Neurobiol Dis 2001;8:492–503.
McEwen B: Estrogen actions throughout the brain. Recent Prog Horm Res 2002;57:357–384.
McEwen BS, Tanapat P, Weiland NG: Inhibition of dendritic spine induction on hippocampal CA1 pyramidal neurons by a nonsteroidal estrogen antagonist in female rats. Endocrinology 1999;140:1044–1047.
Solum DT, Handa RJ: Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus. J Neurosci 2002;22:2650–2659.
Mize AL, Shapiro RA, Dorsa DM: Estrogen receptor-mediated neuroprotection from oxidative stress requires activation of the mitogen-activated protein kinase pathway. Endocrinology 2003;144:306–312.
Tang MX, Jacobs D, Stern Y, Marder K, Schofield P, Gurland B, Andrews H, Mayeux R: Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 1996;348:429–432.
Henderson VW, Paganini-Hill A, Emanuel CK, Dunn ME, Buckwalter JG: Estrogen replacement therapy in older women: Comparisons between Alzheimer’s disease cases and nondemented control subjects. Arch Neurol 1994;51:896–900.
Schneider LS, Farlow MR, Henderson VW, Pogoda JM: Effects of estrogen replacement therapy on response to tacrine in patients with Alzheimer’s disease. Neurology 1996;46:1580–1584.
Levin-Allerhand JA, Smith JD: Ovariectomy of young mutant amyloid precursor protein transgenic mice leads to increased mortality. J Mol Neurosci 2002;19:163–166.
Zheng H, Xu H, Uljon SN, Gross R, Hardy K, Gaynor J, Lafrançois J, Simpkins J, Refolo LM, Petanceska S, Wang R, Duff K: Modulation of A(β) peptides by estrogen in mouse models. J Neurochem 2002;80:191–196.
Vincent B, Smith JD: Effect of estradiol on neuronal Swedish-mutated beta-amyloid precursor protein metabolism: reversal by astrocytic cells. Biochem Biophys Res Commun 2000;271:82–85.
Reiter RJ: The pineal gland and melatonin in relation to aging: a summary of the theories and of the data. Exp Gerontol 1995;30:199–212.
Maurizi CP: Loss of intraventricular fluid melatonin can explain the neuropathology of Alzheimer’s disease. Med Hypotheses 1997;49:153–158.
Liu RY, Zhou JN, van Heerikhuize J, Hofman MA, Swaab DF: Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer’s disease, and apolipoprotein E-epsilon4/4 genotype. J Clin Endocrinol Metab 1999;84:323–327.
Mishima K, Tozawa T, Satoh K, Matsumoto Y, Hishikawa Y, Okawa M: Melatonin secretion rhythm disorders in patients with senile dementia of Alzheimer’s type with disturbed sleep-waking. Biol Psychiatry 1999;45:417–421.
Maurizi CP: Alzheimer’s disease: Roles for mitochondrial damage, the hydroxyl radical, and cerebrospinal fluid deficiency of melatonin. Med Hypotheses 2001;57:156–160.
Reiter RJ: Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J 1995;9:526–533.
Reiter RJ: Oxygen radical detoxification processes during aging: the functional importance of melatonin. Aging 1995;7:340–351.
Miranda S, Opazo C, Larrondo LF, Munoz FJ, Ruiz F, Leighton F, Inestrosa NC: The role of oxidative stress in he toxicity induced by amyloid beta-peptide in Alzheimer’s disease. Prog Neurobiol 2000;62:633–648.
Matsubara E, Bryant-Thomas T, Pacheco Quinto J, Henry TL, Poeggeler B, Herbert D, Cruz-Sanchez F, Chyan YJ, Smith MA, Perry G, Shoji M, Abe K, Leone A, Grundke-Ikbal I, Wilson GL, Ghiso J, Williams C, Refolo LM, Pappolla MA: Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J Neurochem 2003;85:1101–1108.
Poeggeler B, Miravalle L, Zagorski MG, Wisniewski T, Chyan YJ, Zhang Y, Shao H, Bryant-Thomas T, Vidal R, Frangione B, Ghiso J, Pappolla MA: Melatonin reverses the profibrillogenic activity of apolipoprotein E4 on the Alzheimer amyloid Aβ peptide. Biochemistry 2001;40:14995–15001.
Forno LS: Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 1996;55:259–272.
Pollanen MS, Dickson DW, Bergeron C: Pathology and biology of the Lewy body. J Neuropathol Exp Neurol 1993;52:183–191.
Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M: Alpha-synuclein in Lewy bodies. Nature 1997;388:839–840.
Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL: Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997;276:2045–2047.
Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L: Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 2000;287:1265–1269.
Feany MB, Bender WW: A Drosophila model of Parkinson’s disease. Nature 2000;404:394–398.
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998;392:605–608.
Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, STeinbach PJ, Wilkinson KD, Polymeropoulos MH: The ubiquitin pathway in Parkinson’s disease. Nature 1998;395:451–452.
Gasser T, Muller-Myhsok B, Wszolek ZK, Oehlmann R, Calne DB, Bonifati V, Bereznai B, Fabrizio E, Vieregge P, Horstmann RD: A susceptibility locus for Parkinson’s disease maps to chromosome 2p13. Nat Genet 1998;18:262–265.
Farrer M, Gwinn-Hardy K, Muenter M, DeVrieze FW, Crook R, Perez-Tur J, Lincoln S, Maraganore D, Adler C, Newman S, MacElwee K, McCarthy P, Miller C, Water C, Hardy J: A chromosome 4p haplotype segregating with Parkinson’s disease and postural tremor. Hum Mol Genet 1999;8:81–85.
Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F: A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol 2002;51:296–301.
Valente EM, Bentivoglio AR, Dixon PH, Ferraris A, Ialongo T, Frontali M, Albanese A, Wood NW: Localization of a novel locus of autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet 2001;68:895–900.
Van Duijn CM, Dekker MC, Bonifati V, Galjaard RJ, Houwing-Duistermaat JJ, Snijders PJ, Testers L, Breedveld GJ, Horstink M, Sandkuijl LA, van Swieten JC, Oostra BA, Heutink P: Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am J Hum Genet 2001;69:629–634.
Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P: Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003;299:256–259.
Franceschi M, Cecchetto R, Panerai AE, Truci G, Smirne S, Canal N: Plasma beta-endorphin and beta-lipotropin in patients with Parkinson’s disease. Clin Neuropharmacol 1986;9:549–555.
Volpi R, Caffarra P, Scaglioni A, Boni S, Saginario A, Chiodera P, Coiro V: Defective 5-HT 1-receptor-mediated neurotransmission in the control of growth hormone secretion in Parkinson’s disease. Neuropsychobiology 1997;35:79–83.
Volpi R, Caffarra P, Boni S, Scaglioni A, Malvezzi L, Saginario A, Chiodera P, Coiro V: ACTH/cortisol involvement in the serotonergic disorder affecting the parkinsonian brain. Neuropsychobiology 1997;35:73–78.
Rabey JM, Scharf M, Oberman Z, Zohar M, Graff E: Cortisol, ACTH, and beta-endorphin after dexamethasone administration in Parkinson’s dementia. Biol Psychiatry 1990;27:581–591.
Cusimano G, Capriani C, Bonifati V, Meco G: Hypothalamo-pituitary function and dopamine dependence in untreated parkinsonian patients. Acta Neurol Scand 1991;83:145–150.
Eisler T, Thorner MO, MacLeod RM, Kaiser DL, Calne DB: Prolactin secretion in Parkinson disease. Neurology 1981;31:1356–1359.
Vogel HP, Ketsche R: Effect of hypoglycaemia, TRH and levodopa on plasma growth hormone, prolactin, thyrotropin and cortisol in Parkinson’s disease before and during therapy. J Neurol 1986;233:149–152.
Brooks BR: El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial ‘Clinical limits of amyotrophic lateral sclerosis’ workshop contributors. J Neurol Sci 1994;124:96–107.
Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX, et al: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993;362:59–62.
Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, et al: Motor neuron degeneration in mice that express a human Cu/Zn superoxide dismutase mutation. Science 1994;264:1772–1775.
Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW: Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 1995;92:689–693.
Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL: An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 1995;14:1105–1116.
Acher R, Chauvet J: The neurophyophysial endocrine regulatory cascade: Precursors, mediators, receptors, and effectors. Front Neuroendocrinol 1995;16:237–289.
Lutz-Bucher B, Gonzalez de Aguilar JL, Rene F, See V, Gordon JW, Loeffler JP: Oxidative stress and a murine superoxide dismutase-1 mutation promoting amyotrophic lateral sclerosis alter neurosecretion in the hypothalamo-neurohypophyseal axis. Neuroendocrinology 1999;69:377–384.
Gonzalez de Aguilar JL, Gordon JW, René F, Lutz-Bucher B, Kienlen-Campard P, Loeffler JP: A mouse model of familial amyotrophic lateral sclerosis expressing a mutant superoxide dismutase 1 shows evidence of disordered transport in the vasopressin hypothalamo-neurohypophyseal axis. Eur J Neurosci 1999;11:4179–4187.
Fone KC, Dix P, Tomlinson DR, Bennett GW, Marsden CA: Spinal effects of chronic intrathecal administration of the thyrotrophin-releasing hormone analogue (CG 3509) in rats. Brain Res 1988;455:157–161.
Iwasaki Y, Kinoshita M, Ikeda K, Takamiya K, Shiojima T: Trophic effect of various neuropeptides on the cultured ventral spinal cord of rat embryo. Neurosci Lett 1989;101:316–320.
Behbehani MM, Pun RY, Means ED, Anderson DK: Thyrotropin-releasing hormone has profound presynaptic action on cultured spinal cord neurons. Synapse 1990;6:169–174.
Mitsuma T, Adachi K, Mukoyama M, Ando K: Concentrations of thyrotropin-releasing hormone in the brain of patients with amyotrophic lateral sclerosis. J Neurol Sci 1986;76:277–281.
Gibson SJ, Polak JM, Katagiri T, Su H, Weller RO, Brownell DB, Holland S, Hughes JT, Kikuyama S, Ball J, et al: A comparison of the distributions of eight peptides in spinal cord from normal controls and cases of motor neurone disease with special reference to Onuf’s nucleus. Brain Res 1988;474:255–278.
Yamane K, Osawa M, Kobayashi I, Maruyama S: Treatment of amyotrophic lateral sclerosis with thyrotropin-releasing hormone (TRH). Jpn J Psychiatry Neurol 1986;40:179–187.
Brooks BR, Sufit RL, Montgomery GK, Beaulieu DA, Erickson LM: Intravenous thyrotropin-releasing hormone in patients with amyotrophic lateral sclerosis: Dose-response and randomized concurrent placebo-controlled pilot studies. Neurol Clin 1987;5:143–158.
Brooke MH: Thyrotropin-releasing hormone in ALS: Are the results of clinical studies inconsistent? Ann NY Acad Sci 1989;553:422–430.
Guiloff RJ: Use of TRH analogues in motorneurone disease. Ann NY Acad Sci 1989;553:399–421.
Modarres-Sadeghi H, Guiloff RJ: Comparative efficacy and safety of intravenous and oral administration of a TRH analogue (RX77368) in motor neuron disease. J Neurol Neurosurg Psychiatry 1990;53:944–947.
Congia S, Tronci S, Ledda M, Porcella A, Coppola G: Low doses of TRH in amyotrophic lateral sclerosis and in other neurological diseases. Ital J Neurol Sci 1991;12:193–198.
Stober T, Schimrigk K, Dietzsch S, Thielen T: Intrathecal thyrotropin-releasing hormone therapy of amyotrophic lateral sclerosis. J Neurol 1985;232:13–14.
Brooke MH, Florence JM, Heller SL, Kaiser KK, Phillips D, Gruber A, Babcock D, Miller JP: Controlled trial of thyrotropin releasing hormone in amyotrophic lateral sclerosis. Neurology 1986;36:146–151.
Mitsumoto H, Salgado ED, Negroski D, Hanson MR, Salanga VD, Wilber JF, Wilbourn AJ, Breuer AC, Leatherman J: Amyotrophic lateral sclerosis: Effects of acute intravenous and chronic subcutaneous administration of thyrotropin-releasing hormone in controlled trials. Neurology 1986;36:152–159.
Hawley RJ, Kratz R, Goodman RR, McCutchen CB, Sirdofsky M, Hanson PA: Treatment of amyotrophic lateral sclerosis with the TRH analog DN-1417. Neurology 1987;37:715–717.
Brooks BR: A summary of the current position of TRH in ALS therapy. Ann NY Acad Sci 1989;553:431–461.
Hubbard RW, Will AD, Peterson GW, Sanchez A, Gillan WW, Tan SA: Elevated plasma glucagon in amyotrophic lateral sclerosis. Neurology 1992;42:1532–1534.
Festoff BW, Yang SX, Vaught J, Bryan C, Ma JY: The insulin-like growth factor signaling system and ALS neurotrophic factor treatment strategies. J Neurol Sci 1995;129:114–121.
Desport JC, Preux PM, Magy L, Boirie Y, Vallat JM, Beaufrère B, Couratier P: Factors correlated with hypermetabolism in patients with amyotrophic lateral sclerosis. Am J Clin Nutr 2001;74:328–334.
Peskind ER, Wilkinson CW, Petrie EC, Schellenberg GD, Raskind MA: Increased CSF cortisol in AD is a function of APOE genotype. Neurology 2001;56:1094–1098.
Martignoni E, Petraglia F, Costa A, Monzani A, Genazzani AR, Nappi G: Cerebrospinal fluid corticotropin-releasing factor levels and stimulation test in dementia of the Alzheimer type. J Clin Lab Anal 1990;4:5–8.
Bowen RL, Smith MA, Harris PL, Kubat Z, Martins RN, Castellani RJ, Perry G, Atwood CS: Elevated luteinizing hormone expression colocalizes with neurons vulnerable to Alzheimer’s disease pathology. J Neurosci Res 2002;70:514–518.
Cacabelos R, Niigawa H, Ikemura Y, Yanagi Y, Tanaka S, Rodriguez-Arnao MD, Gomez-Pan A, Nishimura T: GHRH-induced GH response in patients with senile dementia of the Alzheimer type. Acta Endocrinol 1988;117:295–301.
Cusimano G, Capriani C, Bonifati V, Meco G: Hypothalamo-pituitary function and dopamine dependence in untreated parkinsonian patients. Acta Neurol Scand 1991;83:145–150.
Torres-Aleman I, Barrios V, Berciano J: The peripheral insulin-like growth factor system in amyotrophic lateral sclerosis and in multiple sclerosis. Neurology 1998;50:772–776.
Bonuccelli U, Piccini P, Napolitano A, Cagnacci A, Paoletti AM, Melis GB, Muratorio A: Reduced luteinizing hormone secretion in women with Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1990;2:225–231.
Facchinetti F, Storchi AR, Pacchetti C, Martignoni E, Genazzani AR: Abnormal proopiomelanocortin processing in Alzheimer’s disease: A case report. Funct Neurol 1987;2:349–353.
el Sobky A, el Shazly M, Darwish AK, Davies T, Griffin K, Keshaven MS: Anterior pituitary response to thyrotropin releasing hormone in senile dementia (Alzheimer type) and elderly normals. Acta Psychiatr Scand 1986;74:13–17.
Kostic VS, Marinkovic Z, Filipovic S, Momcilovic D: Function of dopamine receptors in young-onset Parkinson’s disease: prolactin response. Mov Disord 1993;8:227–229.
Szulc-Kuberska J, Stepien H, Klimek A, Cieslak D: Effect of bromocriptine and metoclopramide on serum prolactin levels in patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 1988;51:643–645.
Molchan SE, Hill JL, Martinez RA, Lawlor BA, Mellow AM, Rubinow DR, Bissette G, Nemeroff CB, Sunderland T: CSF somatostatin in Alzheimer’s disease and major depression: relationship to hypothalamic-pituitary-adrenal axis and clinical measures. Psychoneuroendocrinology 1993;18:509–519.
Militello A, Vitello G, Lunetta C, Toscano A, Maiorana G, Piccoli T, LaBella V: The serum level of free testosterone is reduced in amyotrophic lateral sclerosis. J Neurol Sci 2002;195:67–70.
Yoshida Y, Kato B, Mizushima Y, Arai N, Matsui S, Maruyama M, Kobayashi M: Syndrome of inappropriate secretion of antidiuretic hormone associated with amyotrophic lateral sclerosis in respiratory failure. Respirology 1999;4:185–187.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.