Catecholamines and neuropeptide Y (NPY) levels were determined in the adrenals of rats treated for 2.5 days with chlorisondamine (6 mg/day), a nicotinic ganglionic blocking agent, metyrapone (66 mg/day), an inhibitor of the 11 β-hydroxylase activity or both metyrapone and chlorisondamine. Chlorisondamine induced a significant increase in adrenal weight (31%) without significant rise in hypothalamic CRH content, plasma ACTH level and plasma corticosterone concentration. This drug was unable to affect significantly dopamine (DA), norepinephrine (NE) and epinephrine (E) content of the adrenals; in contrast, it induced a significant decrease (90%) of plasma NE and E levels. Chlorisondamine induced no change in adrenal NPY content as well as NPY mRNA level determined by Northern blot but significantly increased NPY plasma level. Metyrapone-treatment induced a significant drop of plasma corticosterone level and elicited a significant reduction of hypothalamic CRH content, a rise (460%) of the plasma ACTH concentration associated with a significant increase (18%) of the adrenal weight. A marked increase of DA (240%) and significant decrease of E (22%) in the adrenal gland were observed in response to metyrapone treatment. In addition, metyrapone induced a drop (23%) in plasma E level. In both the adrenals and the plasma, the ratio E/NE was significantly reduced by metyrapone treatment. Metyrapone elicited a significant increase of adrenal NPY content (88%) as well as of NPY mRNA revealed by Northern blot analysis but was unable to significantly affect NPY plasma level. The effects of chlorisondamine, given in combination with metyrapone on both hypothalamic CRH content and plasma ACTH level, were similar to those induced by metyrapone given alone. Chlorisondamine-mediated pharmacological ganglionic blockade increased metyrapone-induced adrenal hypertrophy and adrenal DA storage but prevented metyrapone-induced depletion of adrenal E as well as increase of the adrenal NPY mRNA level and NPY content. Chlorisondamine-induced elevation of plasma NPY level was not observed under metyrapone treatment. Present data suggest that the increase in adrenal NPY synthesis in response to metyrapone treatment is mediated by transsynaptic cholinergic activation and implies nicotinic receptors. On the other hand, adrenal TH may be regulated by additional or different mechanisms, which possibly involve nonnicotinic transmission. Present work also suggests that the suppression of the glucocorticoid feedback inhibition of hypothalamic CRH neurons could stimulate sympathoneuronal outflow and consequently elicit transsynaptic cholinergic activation of adrenal neuropeptide Y gene expression.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.