The corticotropin-releasing hormone (CRH) gene contains a perfect palindromic motif in its promoter region that allows binding of the cyclic adenosine monophosphate response element binding protein, CREB. Since previous studies suggest that the CRH gene can be activated by cyclic adenosine mono-phosphate, we determined whether stress and feedback inhibition by glucocorticoids in CRH-producing neurons in the hypothalamic paraventricular nucleus could be mediated by changes in the phosphorylation of CREB. Antisera to CREB and phospho-CREB Ser133 (PCREB), the active phosphorylated form of CREB, were used for immunohistochemical studies on rat brain. In nonstressed animals CREB immunostaining was confined to the nucleus of cells ubiquitously throughout the hypothalamus, while PCREB immunostaining was discretely localized in magnocellular neurons and only a few cells in the medial parvocellular subdivision of the paraventricular nucleus. Ether and handling stress markedly increased the number of PCREB-labeled neurons in the parvocellular subdivision. Double immunolabeling with CRH antiserum revealed that the majority of hypophysiotropic CRH neurons in stressed animals expressed PCREB. Following systemic administration of dexamethasone (100 µg/day) for 2.5 days, PCREB immunostaining was completely abolished in parvocellular CRH-producing neurons after ether or handling stress. Dexamethasone had no apparent effect on CREB immunostaining. These results demonstrate that glucocorticoids suppress CREB phosphorylation in hypophysiotropic CRH neurons and suggest that prevention of CREB phosphorylation is a possible mechanism for feedback inhibition of CRH biosynthesis by glucocorticoids.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.