Basal corticosterone (B) levels increase with age in the rat, a result of decreased negative-feedback inhibition of hypothalamic-pituitary-adrenal (HPA) activity. Postnatal handling increases CNS negative-feedback sensitivity and appears to attenuate some of the changes occurring in the HPA axis in later life. In the experiments described here, we have examined basal HPA function in young (6-8 months) and old (22 months), handled (H) and non-handled (NH) rats in relation to changes in corticosteroid receptor binding. Among young animals, there were no group differences in basal adrenocorticotropin (ACTH) or B levels at any point in the diurnal cycle. In contrast, plasma ACTH and B levels during the PM phase were significantly higher in old NH animals in comparison to old H animals and to both groups of young animals. The H and NH groups did not differ in in vivo adrenal responsiveness to exogenous ACTH. As expected, ACTH sensitivity was greater in all groups during the PM phase and in general, old animals showed a greater response to ACTH regardless of the treatment group. There were no differences across the groups in AM plasma corticosterone-binding globulin (CBG) levels. However, during the PM phase of the cycle, CBG levels were significantly lower and the percentage of B in the free form was significantly higher in the old NH animals. As expected, levels of free B during the PM phase of the cycle were significantly higher in the old NH animals. Thus, there is a significant increase in the PM corticoid signal in the old NH animals that occurs as a function of elevated B and decreased CBG levels; these age-related changes in basal HPA activity were not seen in the old H animals. Type I (mineralocorticoid-like) receptor binding in the hippocampus did not differ as a function of handling and was significantly reduced with age in both H and NH animals. Type II (glucocorticoid) receptor binding decreased as a function of age in both H and NH animals, but was consistently higher in the H animals. There were no differences in type II receptor binding in the hypothalamus or pituitary as a function of age or handling. These data suggest that the increase in basal HPA activity occurring in aged rats is largely restricted to the dark phase of the cycle and is attenuated by postnatal handling, a treatment that increases hippocampal type II corticosteroid receptor binding.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.