Stress-induced release of corticotropin-releasing factor (CRF) and vasopressin (AVP) was studied in rats by measuring the decline of CRF and AVP stores in the median eminence after blockade of fast axonal transport with colchicine (5 µg per rat intracisternally). Quantitative immunocytochemistry was used to detect changes in CRFi and AVPi in the external zone of the median eminence (ZEME) selectively. Immobilization stress induced a fast ACTH response to 1,000–2,000 pg/ml which was associated with a fall in both CRF and AVPi of 34% during the first 30 min. This is followed by different time courses of further AVPi and CRFi depletion. In additon, we investigated the effect of repeated daily stress exposure on CRFi and AVPi in the ZEM 1 day after stress exposure. Repeated daily immobilization for 9 or 16 subsequent days did not affect the CRFi stores in the ZEME, but increased the AVPi stores to 161 ± 13% and 218 ± 11% respectively. Quantitative analysis of electron microphotographs of repeatedly handled rats showed a mean density of CRF positive profiles in the ZEME of 45.5 ± 2.5 per 500 µm2 of which 25% also stained for pro-AVP-derived peptides. After 9 subsequent days of immobilization the total density of CRF-positive profiles remained unchanged, but the fraction of CRF swellings that also stained for pro-AVP-derived peptides increased approximately 2-fold. We conclude that (1) the secretion of AVPi and CRFi from the ZEME are independently controlled, indicating differential activation of AVP containing and AVP deficient CRF neurons during acute immobilization, and (2) repeated stress leads to plastic changes in hypothalamic CRF neurons resulting in increased AVP stores and colocalization in CRF nerve terminals.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.