Studies were undertaken to characterize the secretion of corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) into the hypophysial-portal circulation of the conscious sheep. In addition, we examined the temporal relationship between the secretion of these two hypothalamic peptides and the secretion of three pro-opiomelanocortin peptides – adrenocorticotropic hormone (ACTH), ir-β-endorphin, and ir-α-melanocyte-stimulating hormone – and cortisol and determined the effects of an audiovisual emotional stimulus and insulin-induced hypoglycemia on the entire hypothalamic-pituitary-adrenal axis. In the basal state, the secretion of CRF, AVP, the three pro-opiomelanocortin peptides, and cortisol was pulsatile in nature, and three CRF and AVP pulse patterns were observed: a concordant increase in CRF and AVP, an isolated rise in CRF, and an isolated increase in AVP. In 4 of the 5 animals, a 3-min audiovisual stress (barking dog) rapidly increased the plasma levels of all the measured substances, although the magnitude and duration of the effect differed markedly between the animals. Insulin-induced hypoglycemia markedly increased AVP and, to a lesser extent, CRF concentrations in portal plasma and thereby altered the CRF:AVP molar ratio. Although pituitary-adrenal activation was closely correlated with the increased hypothalamic activity, a strict 1:1 concordance between CRF/AVP secretion and ACTH secretion was not seen. The anesthetic ketamine selectively increased portal AVP concentrations to levels which exceeded those attained during hypoglycemia and rapidly activated the pituitary-adrenal axis. We conclude the following: (1) CRF and AVP are secreted by the hypothalamus in a pulsatile fashion; (2) ACTH secretion can be stimulated by increases in either CRF or AVP; (3) the absence of a strict 1:1 concordance between hypothalamic CRF/AVP release and pituitary ACTH secretion during stress may be partly due to the release of additional hypothalamic ACTH secretagogues; (4) the ability of both audiovisual stimuli and insulin-induced hypoglycemia to augment CRF and AVP secretion indicates that the paraventricular hypothalamus may be activated by a variety of neural inputs, and (5) the marked alteration of the CRF:AVP molar ratio during stress suggests that AVP may be an important ACTH secretagogue in vivo in the sheep.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.