Introduction: Thyroid hormones, which produce critical changes in our bodies even when their physiological levels alter slightly, are crucial hormones that influence gene transcription. Neuronal plasticity, on the other hand, requires both the activation of local proteins as well as protein translation and transcription in response to external signals. So far, no study has examined metaplastic long-term potentiation (LTP) and related gene expression levels in a hyperthyroid experimental model. Methods: The Wistar male rats were administered 0.2 mg/kg/day of l-thyroxine for 21 days to induce hyperthyroidism. Perforant path was primed with 1-Hz low-frequency stimuli (LFS) for 900 s to investigate metaplasticity responses. The LFS was followed by high-frequency stimuli (HFS, 100 Hz) after 5 min. Excitatory postsynaptic potential (EPSP) slope and population spike (PS) amplitude were recorded from the granule cell layer of the dentate gyrus. The mRNA levels of genes related to neurodegeneration (Gsk-3β, Cdk5, Akt1, Mapt, p35, Capn1, Bace1, and Psen2) were measured using the RT-PCR method for the stimulated hippocampus. Results: Similar to euthyroid rats, hyperthyroid animals had a lower EPSP slope and PS after LFS. Depression of EPSP prevented subsequently induced EPSP-LTP, although HFS was able to elicit PS-LTP despite depression of PS amplitude in both groups. Despite similarities in metaplastic LTP responses, these electrophysiological findings were accompanied by increased Akt, Bace1, Cdk5, and p35-mRNA expressions and decreased Gsk-3β mRNA expression in hyperthyroid rats’ hippocampus. Conclusion: These data support the view that in thyroid hormone excess, the mechanism that keeps synaptic efficacy within a dynamic range occurs concurrently with increased mRNA expression of neurodegeneration-related genes. Our study encourages further examination of the increased risk of neurodegenerative disease in hyperthyroidism.

1.
Fidale
TM
,
Antunes
HKM
,
Roever
L
,
Goncalves
A
,
Puga
GM
,
Silva
RPM
, et al
.
Leucine supplementation improves effort tolerance of rats with hyperthyroidism
.
Front Physiol
.
2018
;
9
:
1632
.
2.
Taskin
E
,
Artis
AS
,
Bitiktas
S
,
Dolu
N
,
Liman
N
,
Süer
C
.
Experimentally induced hyperthyroidism disrupts hippocampal long-term potentiation in adult rats
.
Neuroendocrinology
.
2011
;
94
(
3
):
218
27
.
3.
Tan
B
,
Babur
E
,
Asçioglu
M
,
Süer
C
.
Effect of L-thyroxine administration on long-term potentiation and accompanying mitogen-activated protein kinases in rats
.
Int J Neurosci
.
2021
;
81
(
3
):
259
69
.
4.
Whitlock
JR
,
Heynen
AJ
,
Shuler
MG
,
Bear
MF
.
Learning induces long-term potentiation in the hippocampus
.
Science
.
2006
;
313
(
5790
):
1093
7
.
5.
Gruart
A
,
Munoz
MD
,
Delgado-Garcia
JM
.
Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice
.
J Neurosci
.
2006
;
26
(
4
):
1077
87
.
6.
Bliss
TV
,
Lomo
T
.
Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path
.
J Physiol
.
1973
;
232
(
2
):
331
56
.
7.
Yousef
M
,
Babur
E
,
Delibas
S
,
Tan
B
,
Cimen
A
,
Dursun
N
, et al
.
Adult-onset hypothyroidism alters the metaplastic properties of dentate granule cells by decreasing Akt phosphorylation
.
J Mol Neurosci
.
2019
;
68
(
4
):
647
57
.
8.
Stanton
PK
,
Sarvey
JM
.
Blockade of long-term potentiation in rat hippocampal CA1 region by inhibitors of protein synthesis
.
J Neurosci
.
1984
;
4
(
12
):
3080
8
.
9.
Paxinos
G
,
Watson
C
.
The rat brain in stereotaxic coordinates: hard cover edition
:
Elsevier
;
2006
.
10.
Suer
C
,
Dolu
N
,
Artis
AS
,
Sahin
L
,
Yilmaz
A
,
Cetin
A
.
The effects of long-term sleep deprivation on the long-term potentiation in the dentate gyrus and brain oxidation status in rats
.
Neurosci Res
.
2011
;
70
(
1
):
71
7
.
11.
Korte
M
,
Carroll
P
,
Wolf
E
,
Brem
G
,
Thoenen
H
,
Bonhoeffer
T
.
Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor
.
Proc Natl Acad Sci
.
1995
;
92
(
19
):
8856
60
.
12.
Wieland
DR
,
Wieland
JR
,
Wang
H
,
Chen
YH
,
Lin
CH
,
Wang
JJ
, et al
.
Thyroid disorders and dementia risk: a nationwide population-based case-control study
.
Neurology
.
2022
;
99
(
7
):
e679
87
.
13.
Martin
SJ
,
Grimwood
PD
,
Morris
RG
.
Synaptic plasticity and memory: an evaluation of the hypothesis
.
Annu Rev Neurosci
.
2000
;
23
:
649
711
.
14.
Maag
JL
,
Kaczorowski
DC
,
Panja
D
,
Peters
TJ
,
Bramham
CR
,
Wibrand
K
, et al
.
Widespread promoter methylation of synaptic plasticity genes in long-term potentiation in the adult brain in vivo
.
BMC Genom
.
2017
;
18
(
1
):
250
.
15.
Coan
E
,
Irving
A
,
Collingridge
G
.
Low-frequency activation of the NMDA receptor system can prevent the induction of LTP
.
Neurosci Lett
.
1989
;
105
(
1–2
):
205
10
.
16.
O’Dell
TJ
,
Kandel
ER
.
Low-frequency stimulation erases LTP through an NMDA receptor-mediated activation of protein phosphatases
.
Learn Mem
.
1994
;
1
(
2
):
129
39
.
17.
Fujii
S
,
Saito
K
,
Miyakawa
H
,
Ito
K-I
,
Kato
H
.
Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA1 neurons of Guinea pig hippocampal slices
.
Brain Res
.
1991
;
555
(
1
):
112
22
.
18.
Izumi
Y
,
Clifford
DB
,
Zorumski
CF
.
Inhibition of long-term potentiation by NMDA-mediated nitric oxide release
.
Science
.
1992
;
257
(
5074
):
1273
6
.
19.
Izumi
Y
,
O’Dell
KA
,
Zorumski
CF
.
Metaplastic LTP inhibition after LTD induction in CA1 hippocampal slices involves NMDA Receptor-mediated Neurosteroidogenesis
.
Physiol Rep
.
2013
;
1
(
5
):
e00133
.
20.
Chen
PB
,
Kawaguchi
R
,
Blum
C
,
Achiro
JM
,
Coppola
G
,
O’Dell
TJ
, et al
.
Mapping gene expression in excitatory neurons during hippocampal late-phase long-term potentiation
.
Front Mol Neurosci
.
2017
;
10
:
39
.
21.
Dudek
SM
,
Fields
RD
.
Gene expression in hippocampal long-term potentiation
.
Neurosci J
.
1999
;
5
(
5
):
275
9
.
22.
Altunkaya
M
,
Dursun
N
,
Suer
C
.
Alterations in expression of neurodegeneration-related genes after long-term potentiation in the Hippocampus of hyperthyroid rats
.
Namik Kemal Med J
.
2022
;
10
(
4
):
377
85
.
23.
O’Barr
SA
,
Oh
JS
,
Ma
C
,
Brent
GA
,
Schultz
JJ
.
Thyroid hormone regulates endogenous amyloid-beta precursor protein gene expression and processing in both in vitro and in vivo models
.
Thyroid
.
2006
;
16
(
12
):
1207
13
.
24.
Haass
C
,
Schlossmacher
MG
,
Hung
AY
,
Vigopelfrey
C
,
Mellon
A
,
Ostaszewski
BL
, et al
.
Amyloid beta-peptide is produced by cultured-cells during normal metabolism
.
Nature
.
1992
;
359
(
6393
):
322
5
.
25.
Seubert
P
,
Vigo-Pelfrey
C
,
Esch
F
,
Lee
M
,
Dovey
H
,
Davis
D
, et al
.
Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids
.
Nature
.
1992
;
359
(
6393
):
325
7
.
26.
Pao
P-C
,
Tsai
L-H
.
Three decades of Cdk5
.
J Biomed Sci
.
2021
;
28
(
1
):
79
17
.
27.
Robb
CM
,
Kour
S
,
Contreras
JI
,
Agarwal
E
,
Barger
CJ
,
Rana
S
, et al
.
Characterization of CDK (5) inhibitor, 20-223 (aka CP668863) for colorectal cancer therapy
.
Oncotarget
.
2018
;
9
(
4
):
5216
32
.
28.
Sahin
L
,
Müsüroglu
SK
,
Cevik
OS
,
Cevik
K
,
Temel
GO
.
Hyperthyroidism leads learning and memory impairment possibly via GRIN2B expression alterations
.
Brain Res
.
2023
:
1802
:
148209
.
29.
Town
T
,
Zolton
J
,
Shaffner
R
,
Schnell
B
,
Crescentini
R
,
Wu
YJ
, et al
.
p35/Cdk5 pathway mediates soluble amyloid-beta peptide-induced tau phosphorylation in vitro
.
J Neurosci Res
.
2002
;
69
(
3
):
362
72
.
30.
Giese
KP
,
Ris
L
,
Plattner
F
.
Is there a role of the cyclin-dependent kinase 5 activator p25 in Alzheimer’s disease
.
Neuroreport
.
2005
;
16
(
16
):
1725
30
.
31.
Zhang
JW
,
Johnson
GVW
.
Tau protein is hyperphosphorylated in a site-specific manner in apoptotic neuronal PC12 cells
.
J Neurochem
.
2000
;
75
(
6
):
2346
57
.
32.
Yang
LQ
,
Liu
WX
,
Shi
LY
,
Wu
J
,
Zhang
WC
,
Chuang
YA
, et al
.
NMDA receptor-arc signaling is required for memory updating and is disrupted in alzheimer’s disease
.
Biol Psychiatry
.
2023
;
94
(
9
):
706
20
.
33.
Hooper
C
,
Markevich
V
,
Plattner
F
,
Killick
R
,
Schofield
E
,
Engel
T
, et al
.
Glycogen synthase kinase-3 inhibition is integral to long-term potentiation
.
Eur J Neurosci
.
2007
;
25
(
1
):
81
6
.
34.
Hernández
F
,
Borrell
J
,
Guaza
C
,
Avila
J
,
Lucas
JJ
.
Spatial learning deficit in transgenic mice that conditionally over-express GSK-3beta in the brain but do not form tau filaments
.
J Neurochem
.
2002
;
83
(
6
):
1529
33
.
35.
Tan
B
,
Babur
E
,
Toy
N
,
Günaydın
B
,
Dursun
N
,
Süer
C
.
Tau protein is differentially phosphorylated in young-and old-aged rats with experimentally induced hyperthyroidism
.
Int J Dev Neurosci
.
2022
;
82
(
7
):
654
63
.
36.
van Boxtel
MP
,
Menheere
PP
,
Bekers
O
,
Hogervorst
E
,
Jolles
J
.
Thyroid function, depressed mood, and cognitive performance in older individuals: the Maastricht Aging Study
.
Psychoneuroendocrinology
.
2004
;
29
(
7
):
891
8
.
37.
Wahlin
A
,
Bunce
D
,
Wahlin
TBR
.
Longitudinal evidence of the impact of normal thyroid stimulating hormone variations on cognitive functioning in very old age
.
Psychoneuroendocrinology
.
2005
;
30
(
7
):
625
37
.
38.
de Jong
FJ
,
den Heijer
T
,
Visser
TJ
,
de Rijke
YB
,
Drexhage
HA
,
Hofman
A
, et al
.
Thyroid hormones, dementia, and atrophy of the medial temporal lobe
.
J Clin Endocrinol Metab
.
2006
;
91
(
7
):
2569
73
.
39.
Kalmijn
S
,
Mehta
KM
,
Pols
HAP
,
Hofman
A
,
Drexhage
HA
,
Breteler
MMB
.
Subclinical hyperthyroidism and the risk of dementia. The Rotterdam study
.
Clin Endocrinol
.
2000
;
53
(
6
):
733
7
.
40.
Roberts
LM
,
Pattison
H
,
Roalfe
A
,
Franklyn
J
,
Wilson
S
,
Hobbs
FD
, et al
.
Is subclinical thyroid dysfunction in the elderly associated with depression or cognitive dysfunction
.
Ann Intern Med
.
2006
;
145
(
8
):
573
81
.
41.
Wu
Y
,
Pei
Y
,
Wang
F
,
Xu
D
,
Cui
W
.
Higher FT4 or TSH below the normal range are associated with increased risk of dementia: a meta-analysis of 11 studies
.
Sci Rep
.
2016
;
6
:
31975
.
You do not currently have access to this content.