Introduction: Corticotropin-releasing factor and its primary receptor (CRFR1) are critical regulators of behavioral and neuroendocrine stress responses. CRFR1 has also been associated with stress-related behavioral changes in postpartum mice. Our previous studies indicate dynamic changes in CRFR1 levels and coupling of CRFR1 with tyrosine hydroxylase (TH) and oxytocin (OT) neurons in postpartum mice. In this study, we aimed to determine the time course of these changes during the postpartum period. Methods: Using a CRFR1-GFP reporter mouse line, we compared postpartum mice at five time points with nulliparous mice. We performed immunohistochemistry to assess changes in CRFR1 levels and changes in co-expression of TH/CRFR1-GFP and OT/CRFR1-GFP across the postpartum period. Mice were also assessed for behavioral stress responses in the open field test. Results: Relative to nulliparous mice, CRFR1 levels were elevated in the anteroventral periventricular nucleus (AVPV/PeN) but were decreased in the medial preoptic area from postpartum day 1 (P1) through P28. In the paraventricular hypothalamus (PVN), there is a transient decline in CRFR1 mid-postpartum with a nadir at P7. Co-localization of CRFR1 with TH-expressing neurons was also altered with a transient decrease found in the AVPV/PeN at P7 and P14. Co-expression of CRFR1 and OT neurons of the PVN and supraoptic nucleus was dramatically altered with virtually no co-expression found in nulliparous mice, but levels increased shortly after parturition and peaked near P21. A transient decrease in open field center time was found at P7, indicating elevated anxiety-like behavior. Conclusion: This study revealed various changes in CRFR1 across the postpartum period, which may contribute to stress-related behavior changes in postpartum mice.

1.
Vale
W
,
Spiess
J
,
Rivier
C
,
Rivier
J
.
Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin
.
Science
.
1981
;
213
(
4514
):
1394
7
.
2.
Owens
MJ
,
Nemeroff
CB
.
Physiology and pharmacology of corticotropin-releasing factor
.
Pharmacol Rev
.
1991
;
43
(
4
):
425
73
.
3.
Stenzel-Poore
MP
,
Heinrichs
SC
,
Rivest
S
,
Koob
GF
,
Vale
WW
.
Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior
.
J Neurosci
.
1994
14
5 Pt 1
2579
84
.
4.
Groenink
L
,
Dirks
A
,
Verdouw
PM
,
Schipholt
M
,
Veening
JG
,
van der Gugten
J
.
HPA axis dysregulation in mice overexpressing corticotropin releasing hormone
.
Biol Psychiatry
.
2002
;
51
(
11
):
875
81
.
5.
Bale
TL
,
Vale
WW
.
CRF and CRF receptors: role in stress responsivity and other behaviors
.
Annu Rev Pharmacol Toxicol
.
2004
;
44
:
525
57
.
6.
Britton
KT
,
Lee
G
,
Vale
W
,
Rivier
J
,
Koob
GF
.
Corticotropin releasing factor (CRF) receptor antagonist blocks activating and “anxiogenic” actions of CRF in the rat
.
Brain Res
.
1986
369
1–2
303
6
.
7.
Skutella
T
,
Probst
JC
,
Renner
U
,
Holsboer
F
,
Behl
C
.
Corticotropin-releasing hormone receptor (type I) antisense targeting reduces anxiety
.
Neuroscience
.
1998
;
85
(
3
):
795
805
.
8.
Timpl
P
,
Spanagel
R
,
Sillaber
I
,
Kresse
A
,
Reul
JM
,
Stalla
GK
.
Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1
.
Nat Genet
.
1998
;
19
(
2
):
162
6
.
9.
Smith
GW
,
Aubry
JM
,
Dellu
F
,
Contarino
A
,
Bilezikjian
LM
,
Gold
LH
.
Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development
.
Neuron
.
1998
;
20
(
6
):
1093
102
.
10.
Contarino
A
,
Dellu
F
,
Koob
GF
,
Smith
GW
,
Lee
KF
,
Vale
W
.
Reduced anxiety-like and cognitive performance in mice lacking the corticotropin-releasing factor receptor 1
.
Brain Res
.
1999
;
835
(
1
):
1
9
.
11.
Habib
KE
,
Weld
KP
,
Rice
KC
,
Pushkas
J
,
Champoux
M
,
Listwak
S
.
Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates
.
Proc Natl Acad Sci U S A
.
2000
;
97
(
11
):
6079
84
.
12.
Muller
MB
,
Zimmermann
S
,
Sillaber
I
,
Hagemeyer
TP
,
Deussing
JM
,
Timpl
P
.
Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress
.
Nat Neurosci
.
2003
;
6
(
10
):
1100
7
.
13.
Gehlert
DR
,
Shekhar
A
,
Morin
SM
,
Hipskind
PA
,
Zink
C
,
Gackenheimer
SL
.
Stress and central Urocortin increase anxiety-like behavior in the social interaction test via the CRF1 receptor
.
Eur J Pharmacol
.
2005
509
2–3
145
53
.
14.
Iliadis
SI
,
Sylven
S
,
Hellgren
C
,
Olivier
JD
,
Schijven
D
,
Comasco
E
.
Mid-Pregnancy corticotropin-releasing hormone levels in association with postpartum depressive symptoms
.
Depress Anxiety
.
2016
;
33
(
11
):
1023
30
.
15.
Engineer
N
,
Darwin
L
,
Nishigandh
D
,
Ngianga-Bakwin
K
,
Smith
SC
,
Grammatopoulos
DK
.
Association of glucocorticoid and type 1 corticotropin-releasing hormone receptors gene variants and risk for depression during pregnancy and post-partum
.
J Psychiatr Res
.
2013
;
47
(
9
):
1166
73
.
16.
Gammie
SC
,
Bethea
ED
,
Stevenson
SA
.
Altered maternal profiles in corticotropin-releasing factor receptor 1 deficient mice
.
BMC Neurosci
.
2007
;
8
:
17
.
17.
Klampfl
SM
,
Bosch
OJ
.
Mom doesn’t care: when increased brain CRF system activity leads to maternal neglect in rodents
.
Front Neuroendocrinol
.
2019
;
53
:
100735
.
18.
Klampfl
SM
,
Brunton
PJ
,
Bayerl
DS
,
Bosch
OJ
.
CRF-R1 activation in the anterior-dorsal BNST induces maternal neglect in lactating rats via an HPA axis-independent central mechanism
.
Psychoneuroendocrinology
.
2016
;
64
:
89
98
.
19.
Klampfl
SM
,
Neumann
ID
,
Bosch
OJ
.
Reduced brain corticotropin-releasing factor receptor activation is required for adequate maternal care and maternal aggression in lactating rats
.
Eur J Neurosci
.
2013
;
38
(
5
):
2742
50
.
20.
Klampfl
SM
,
Schramm
MM
,
Gasner
BM
,
Hubner
K
,
Seasholtz
AF
,
Brunton
PJ
.
Maternal stress and the MPOA: activation of CRF receptor 1 impairs maternal behavior and triggers local oxytocin release in lactating rats
.
Neuropharmacology
.
2018
;
133
:
440
50
.
21.
da Costa
AP
,
Wood
S
,
Ingram
CD
,
Lightman
SL
.
Region-specific reduction in stress-induced c-fos mRNA expression during pregnancy and lactation
.
Brain Res
.
1996
742
1–2
177
84
.
22.
Maestripieri
D
,
D’Amato
FR
.
Anxiety and maternal aggression in house mice (Mus musculus): a look at interindividual variability
.
J Comp Psychol
.
1991
;
105
(
3
):
295
301
.
23.
Craft
RM
,
Kostick
ML
,
Rogers
JA
,
White
CL
,
Tsutsui
KT
.
Forced swim test behavior in postpartum rats
.
Pharmacol Biochem Behav
.
2010
;
96
(
4
):
402
12
.
24.
Molina-Hernandez
M
,
Tellez-Alcantara
NP
.
Antidepressant-like actions of pregnancy, and progesterone in Wistar rats forced to swim
.
Psychoneuroendocrinology
.
2001
;
26
(
5
):
479
91
.
25.
Shoji
H
,
Miyakawa
T
.
Increased depression-related behavior during the postpartum period in inbred BALB/c and C57BL/6 strains
.
Mol Brain
.
2019
;
12
(
1
):
70
.
26.
De Guzman
RM
,
Rosinger
ZJ
,
Parra
KE
,
Jacobskind
JS
,
Justice
NJ
,
Zuloaga
DG
.
Alterations in corticotropin-releasing factor receptor type 1 in the preoptic area and hypothalamus in mice during the postpartum period
.
Horm Behav
.
2021
;
135
:
105044
.
27.
Melon
LC
,
Hooper
A
,
Yang
X
,
Moss
SJ
,
Maguire
J
.
Inability to suppress the stress-induced activation of the HPA axis during the peripartum period engenders deficits in postpartum behaviors in mice
.
Psychoneuroendocrinology
.
2018
;
90
:
182
93
.
28.
Ray
S
,
Tzeng
RY
,
DiCarlo
LM
,
Bundy
JL
,
Vied
C
,
Tyson
G
.
An examination of dynamic gene expression changes in the mouse brain during pregnancy and the postpartum period
.
G3
.
2015
;
6
(
1
):
221
33
.
29.
Ugartemendia
L
,
De Guzman
RM
,
Cai
J
,
Rajamanickam
S
,
Jiang
Z
,
Tao
J
.
A subpopulation of oxytocin neurons initiate expression of CRF receptor 1 (CRFR1) in females post parturition
.
Psychoneuroendocrinology
.
2022
;
145
:
105918
.
30.
Justice
NJ
,
Yuan
ZF
,
Sawchenko
PE
,
Vale
W
.
Type 1 corticotropin-releasing factor receptor expression reported in BAC transgenic mice: implications for reconciling ligand-receptor mismatch in the central corticotropin-releasing factor system
.
J Comp Neurol
.
2008
;
511
(
4
):
479
96
.
31.
Jiang
Z
,
Rajamanickam
S
,
Justice
NJ
.
Local corticotropin-releasing factor signaling in the hypothalamic paraventricular nucleus
.
J Neurosci
.
2018
;
38
(
8
):
1874
90
.
32.
Rosinger
ZJ
,
De Guzman
RM
,
Jacobskind
JS
,
Saglimbeni
B
,
Malone
M
,
Fico
D
.
Sex-dependent effects of chronic variable stress on discrete corticotropin-releasing factor receptor 1 cell populations
.
Physiol Behav
.
2020
;
219
:
112847
.
33.
Jacobskind
JS
,
Rosinger
ZJ
,
Gonzalez
T
,
Zuloaga
KL
,
Zuloaga
DG
.
Chronic methamphetamine exposure attenuates neural activation in hypothalamic-pituitary-adrenal axis-associated brain regions in a sex-specific manner
.
Neuroscience
.
2018
;
380
:
132
45
.
34.
Jacobskind
JS
,
Rosinger
ZJ
,
Brooks
ML
,
Zuloaga
DG
.
Stress-induced neural activation is altered during early withdrawal from chronic methamphetamine
.
Behav Brain Res
.
2019
;
366
:
67
76
.
35.
Rosinger
ZJ
,
Jacobskind
JS
,
De Guzman
RM
,
Justice
NJ
,
Zuloaga
DG
.
A sexually dimorphic distribution of corticotropin-releasing factor receptor 1 in the paraventricular hypothalamus
.
Neuroscience
.
2019
;
409
:
195
203
.
36.
Rosinger
ZJ
,
Jacobskind
JS
,
Park
SG
,
Justice
NJ
,
Zuloaga
DG
.
Distribution of corticotropin-releasing factor receptor 1 in the developing mouse forebrain: a novel sex difference revealed in the rostral periventricular hypothalamus
.
Neuroscience
.
2017
;
361
:
167
78
.
37.
Rosinger
ZJ
,
Jacobskind
JS
,
Bulanchuk
N
,
Malone
M
,
Fico
D
,
Justice
NJ
.
Characterization and gonadal hormone regulation of a sexually dimorphic corticotropin-releasing factor receptor 1 cell group
.
J Comp Neurol
.
2019
;
527
(
6
):
1056
69
.
38.
Dupouy
JP
,
Coffigny
H
,
Magre
S
.
Maternal and foetal corticosterone levels during late pregnancy in rats
.
J Endocrinol
.
1975
;
65
(
3
):
347
52
.
39.
Numan
M
,
Stolzenberg
DS
.
Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats
.
Front Neuroendocrinol
.
2009
;
30
(
1
):
46
64
.
40.
Jiang
NM
,
Cowan
M
,
Moonah
SN
,
Petri
WA
Jr
.
The impact of systemic inflammation on neurodevelopment
.
Trends Mol Med
.
2018
;
24
(
9
):
794
804
.
41.
Kuroda
KO
,
Tachikawa
K
,
Yoshida
S
,
Tsuneoka
Y
,
Numan
M
.
Neuromolecular basis of parental behavior in laboratory mice and rats: with special emphasis on technical issues of using mouse genetics
.
Prog Neuropsychopharmacol Biol Psychiatry
.
2011
;
35
(
5
):
1205
31
.
42.
Love
MI
,
Huber
W
,
Anders
S
.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol
.
2014
;
15
(
12
):
550
.
43.
Scott
N
,
Prigge
M
,
Yizhar
O
,
Kimchi
T
.
A sexually dimorphic hypothalamic circuit controls maternal care and oxytocin secretion
.
Nature
.
2015
;
525
(
7570
):
519
22
.
44.
Swanson
LW
,
Hartman
BK
.
The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker
.
J Comp Neurol
.
1975
;
163
(
4
):
467
505
.
45.
Negishi
K
,
Payant
MA
,
Schumacker
KS
,
Wittmann
G
,
Butler
RM
,
Lechan
RM
.
Distributions of hypothalamic neuron populations coexpressing tyrosine hydroxylase and the vesicular GABA transporter in the mouse
.
J Comp Neurol
.
2020
;
528
(
11
):
1833
55
.
46.
Brown
RSE
,
Herbison
AE
,
Grattan
DR
.
Effects of prolactin and lactation on A15 dopamine neurones in the rostral preoptic area of female mice
.
J Neuroendocrinol
.
2015
;
27
(
9
):
708
17
.
47.
Paul
HA
,
Hallam
MC
,
Reimer
RA
.
Milk collection in the rat using capillary tubes and estimation of milk fat content by creamatocrit
.
J Vis Exp
.
2015
106
e53476
.
48.
Refojo
D
,
Schweizer
M
,
Kuehne
C
,
Ehrenberg
S
,
Thoeringer
C
,
Vogl
AM
.
Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1
.
Science
.
2011
;
333
(
6051
):
1903
7
.
49.
Parent
C
,
Wen
X
,
Dhir
SK
,
Ryan
R
,
Diorio
J
,
Zhang
TY
.
Maternal care associates with differences in morphological complexity in the medial preoptic area
.
Behav Brain Res
.
2017
;
326
:
22
32
.
50.
Imaki
T
,
Katsumata
H
,
Miyata
M
,
Naruse
M
,
Imaki
J
,
Minami
S
.
Expression of corticotropin releasing factor (CRF), urocortin and CRF type 1 receptors in hypothalamic-hypophyseal systems under osmotic stimulation
.
J Neuroendocrinol
.
2001
;
13
(
4
):
328
38
.
51.
Imaki
T
,
Katsumata
H
,
Konishi
SI
,
Kasagi
Y
,
Minami
S
.
Corticotropin-releasing factor type-1 receptor mRNA is not induced in mouse hypothalamus by either stress or osmotic stimulation
.
J Neuroendocrinol
.
2003
;
15
(
10
):
916
24
.
52.
Deak
T
,
Nguyen
KT
,
Ehrlich
AL
,
Watkins
LR
,
Spencer
RL
,
Maier
SF
.
The impact of the nonpeptide corticotropin-releasing hormone antagonist antalarmin on behavioral and endocrine responses to stress
.
Endocrinology
.
1999
;
140
(
1
):
79
86
.
53.
Sztainberg
Y
,
Kuperman
Y
,
Justice
N
,
Chen
A
.
An anxiolytic role for CRF receptor type 1 in the globus pallidus
.
J Neurosci
.
2011
;
31
(
48
):
17416
24
.
54.
Sink
KS
,
Chung
A
,
Ressler
KJ
,
Davis
M
,
Walker
DL
.
Anxiogenic effects of CGRP within the BNST may be mediated by CRF acting at BNST CRFR1 receptors
.
Behav Brain Res
.
2013
;
243
:
286
93
.
55.
Klampfl
SM
,
Brunton
PJ
,
Bayerl
DS
,
Bosch
OJ
.
Hypoactivation of CRF receptors, predominantly type 2, in the medial-posterior BNST is vital for adequate maternal behavior in lactating rats
.
J Neurosci
.
2014
;
34
(
29
):
9665
76
.
56.
Ramot
A
,
Jiang
Z
,
Tian
JB
,
Nahum
T
,
Kuperman
Y
,
Justice
N
.
Hypothalamic CRFR1 is essential for HPA axis regulation following chronic stress
.
Nat Neurosci
.
2017
;
20
(
3
):
385
8
.
57.
Meaney
MJ
,
Viau
V
,
Aitken
DH
,
Bhatnagar
S
.
Glucocorticoid receptors in brain and pituitary of the lactating rat
.
Physiol Behav
.
1989
;
45
(
1
):
209
12
.
58.
Insel
TR
.
Regional changes in brain oxytocin receptors post-partum: time-course and relationship to maternal behaviour
.
J Neuroendocrinol
.
1990
;
2
(
4
):
539
45
.
59.
Brummelte
S
,
Galea
LAM
.
Postpartum depression: etiology, treatment and consequences for maternal care
.
Horm Behav
.
2016
;
77
:
153
66
.
60.
Galea
LA
,
Wide
JK
,
Barr
AM
.
Estradiol alleviates depressive-like symptoms in a novel animal model of post-partum depression
.
Behav Brain Res
.
2001
;
122
(
1
):
1
9
.
61.
Zhang
Z
,
Hong
J
,
Zhang
S
,
Zhang
T
,
Sha
S
,
Yang
R
.
Postpartum estrogen withdrawal impairs hippocampal neurogenesis and causes depression- and anxiety-like behaviors in mice
.
Psychoneuroendocrinology
.
2016
;
66
:
138
49
.
62.
Li
XB
,
Liu
A
,
Yang
L
,
Zhang
K
,
Wu
YM
,
Zhao
MG
.
Antidepressant-like effects of translocator protein (18 kDa) ligand ZBD-2 in mouse models of postpartum depression
.
Mol Brain
.
2018
;
11
(
1
):
12
.
63.
Wang
J
,
Yun
Q
,
Ma
SF
,
Song
HR
,
Guo
MN
,
Zhang
WN
.
Inhibition of expression of glucocorticoids receptors may contribute to postpartum depression
.
Biochem Biophys Res Commun
.
2020
;
523
(
1
):
159
64
.
64.
Neumann
I
,
Landgraf
R
.
Septal and hippocampal release of oxytocin, but not vasopressin, in the conscious lactating rat during suckling
.
J Neuroendocrinol
.
1989
;
1
(
4
):
305
8
.
65.
Neumann
I
,
Russell
JA
,
Landgraf
R
.
Oxytocin and vasopressin release within the supraoptic and paraventricular nuclei of pregnant, parturient and lactating rats: a microdialysis study
.
Neuroscience
.
1993
;
53
(
1
):
65
75
.
66.
Torner
L
,
Toschi
N
,
Nava
G
,
Clapp
C
,
Neumann
ID
.
Increased hypothalamic expression of prolactin in lactation: involvement in behavioural and neuroendocrine stress responses
.
Eur J Neurosci
.
2002
;
15
(
8
):
1381
9
.
You do not currently have access to this content.