Introduction: Intestinal gluconeogenesis (IGN) exerts metabolic benefits in energy homeostasis via the neural sensing of portal glucose. Objective: The aim of this work was to determine central mechanisms involved in the effects of IGN on the control of energy homeostasis. Methods: We investigated the effects of glucose infusion into the portal vein, at a rate that mimics IGN, in conscious wild-type, leptin-deficient Ob/Ob and calcitonin gene-related peptide (CGRP)-deficient mice. Results: We report that portal glucose infusion decreases food intake and plasma glucose and induces in the hypothalamic arcuate nucleus (ARC) the phosphorylation of STAT3, the classic intracellular messenger of leptin signaling. This notably takes place in POMC-expressing neurons. STAT3 phosphorylation does not require leptin, since portal glucose effects are observed in leptin-deficient Ob/Ob mice. We hypothesized that the portal glucose effects could require CGRP, a neuromediator previously suggested to suppress hunger. In line with this hypothesis, neither the metabolic benefits nor the phosphorylation of STAT3 in the ARC take place upon portal glucose infusion in CGRP-deficient mice. Moreover, intracerebroventricular injection of CGRP activates hypothalamic phosphorylation of STAT3 in mice, and CGRP does the same in hypothalamic cells. Finally, no metabolic benefit of dietary fibers (known to depend on the induction of IGN), takes place in CGRP-deficient mice. Conclusions: CGRP-induced phosphorylation of STAT3 in the ARC is part of the neural chain determining the hunger-modulating and glucose-lowering effects of IGN/portal glucose.

1.
Badman
MK
,
Flier
JS
.
The gut and energy balance: visceral allies in the obesity wars
.
Science
.
2005
Mar
;
307
(
5717
):
1909
14
.
[PubMed]
0036-8075
2.
Friedman
JM
,
Halaas
JL
.
Leptin and the regulation of body weight in mammals
.
Nature
.
1998
Oct
;
395
(
6704
):
763
70
.
[PubMed]
0028-0836
3.
Adamska
E
,
Ostrowska
L
,
Górska
M
,
Krętowski
A
.
The role of gastrointestinal hormones in the pathogenesis of obesity and type 2 diabetes
.
Prz Gastroenterol
.
2014
;
9
(
2
):
69
76
.
[PubMed]
1895-5770
4.
De Vadder
F
,
Kovatcheva-Datchary
P
,
Goncalves
D
,
Vinera
J
,
Zitoun
C
,
Duchampt
A
, et al.
Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits
.
Cell
.
2014
Jan
;
156
(
1-2
):
84
96
.
[PubMed]
0092-8674
5.
De Vadder
F
,
Kovatcheva-Datchary
P
,
Zitoun
C
,
Duchampt
A
,
Bäckhed
F
,
Mithieux
G
.
Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis
.
Cell Metab
.
2016
Jul
;
24
(
1
):
151
7
.
[PubMed]
1550-4131
6.
Duraffourd
C
,
De Vadder
F
,
Goncalves
D
,
Delaere
F
,
Penhoat
A
,
Brusset
B
, et al.
Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake
.
Cell
.
2012
Jul
;
150
(
2
):
377
88
.
[PubMed]
0092-8674
7.
Mithieux
G
,
Misery
P
,
Magnan
C
,
Pillot
B
,
Gautier-Stein
A
,
Bernard
C
, et al.
Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein
.
Cell Metab
.
2005
Nov
;
2
(
5
):
321
9
.
[PubMed]
1550-4131
8.
Delaere
F
,
Duchampt
A
,
Mounien
L
,
Seyer
P
,
Duraffourd
C
,
Zitoun
C
, et al.
The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing
.
Mol Metab
.
2012
Dec
;
2
(
1
):
47
53
.
[PubMed]
2212-8778
9.
Delaere
F
,
Akaoka
H
,
De Vadder
F
,
Duchampt
A
,
Mithieux
G
.
Portal glucose influences the sensory, cortical and reward systems in rats
.
Eur J Neurosci
.
2013
Nov
;
38
(
10
):
3476
86
.
[PubMed]
0953-816X
10.
Soty
M
,
Penhoat
A
,
Amigo-Correig
M
,
Vinera
J
,
Sardella
A
,
Vullin-Bouilloux
F
, et al.
A gut-brain neural circuit controlled by intestinal gluconeogenesis is crucial in metabolic health
.
Mol Metab
.
2014
Dec
;
4
(
2
):
106
17
.
[PubMed]
2212-8778
11.
Troy
S
,
Soty
M
,
Ribeiro
L
,
Laval
L
,
Migrenne
S
,
Fioramonti
X
, et al.
Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice
.
Cell Metab
.
2008
Sep
;
8
(
3
):
201
11
.
[PubMed]
1550-4131
12.
Soty
M
,
Gautier-Stein
A
,
Rajas
F
,
Mithieux
G
.
Gut-Brain Glucose Signaling in Energy Homeostasis
.
Cell Metab
.
2017
Jun
;
25
(
6
):
1231
42
.
[PubMed]
1550-4131
13.
Enriori
PJ
,
Sinnayah
P
,
Simonds
SE
,
Garcia Rudaz
C
,
Cowley
MA
.
Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance
.
J Neurosci
.
2011
Aug
;
31
(
34
):
12189
97
.
[PubMed]
0270-6474
14.
Martin
TL
,
Alquier
T
,
Asakura
K
,
Furukawa
N
,
Preitner
F
,
Kahn
BB
.
Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle
.
J Biol Chem
.
2006
Jul
;
281
(
28
):
18933
41
.
[PubMed]
0021-9258
15.
Vaisse
C
,
Halaas
JL
,
Horvath
CM
,
Darnell
JE
 Jr
,
Stoffel
M
,
Friedman
JM
.
Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice
.
Nat Genet
.
1996
Sep
;
14
(
1
):
95
7
.
[PubMed]
1061-4036
16.
Guzmán
A
,
Hernández-Coronado
CG
,
Rosales-Torres
AM
,
Hernández-Medrano
JH
.
Leptin regulates neuropeptides associated with food intake and GnRH secretion
.
Ann Endocrinol (Paris)
.
2019
Feb
;
80
(
1
):
38
46
.
[PubMed]
0003-4266
17.
Kim
JD
,
Leyva
S
,
Diano
S
.
Hormonal regulation of the hypothalamic melanocortin system
.
Front Physiol
.
2014
Dec
;
5
:
480
.
[PubMed]
1664-042X
18.
Aguilar-Bryan
L
,
Bryan
J
.
Molecular biology of adenosine triphosphate-sensitive potassium channels
.
Endocr Rev
.
1999
Apr
;
20
(
2
):
101
35
.
[PubMed]
0163-769X
19.
Chiba
T
,
Yamaguchi
A
,
Yamatani
T
,
Nakamura
A
,
Morishita
T
,
Inui
T
, et al.
Calcitonin gene-related peptide receptor antagonist human CGRP-(8-37)
.
Am J Physiol
.
1989
Feb
;
256
(
2 Pt 1
):
E331
5
.
[PubMed]
0002-9513
20.
Bellocchio
L
,
Soria-Gómez
E
,
Quarta
C
,
Metna-Laurent
M
,
Cardinal
P
,
Binder
E
, et al.
Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade
.
Proc Natl Acad Sci USA
.
2013
Mar
;
110
(
12
):
4786
91
.
[PubMed]
0027-8424
21.
Brown
LM
,
Clegg
DJ
,
Benoit
SC
,
Woods
SC
.
Intraventricular insulin and leptin reduce food intake and body weight in C57BL/6J mice
.
Physiol Behav
.
2006
Dec
;
89
(
5
):
687
91
.
[PubMed]
0031-9384
22.
Sako
K
,
Okuma
Y
,
Hosoi
T
,
Nomura
Y
.
STAT3 activation and c-FOS expression in the brain following peripheral administration of bacterial DNA
.
J Neuroimmunol
.
2005
Jan
;
158
(
1-2
):
40
9
.
[PubMed]
0165-5728
23.
Roth
JD
,
Roland
BL
,
Cole
RL
,
Trevaskis
JL
,
Weyer
C
,
Koda
JE
, et al.
Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies
.
Proc Natl Acad Sci USA
.
2008
May
;
105
(
20
):
7257
62
.
[PubMed]
0027-8424
24.
Turek
VF
,
Trevaskis
JL
,
Levin
BE
,
Dunn-Meynell
AA
,
Irani
B
,
Gu
G
, et al.
Mechanisms of amylin/leptin synergy in rodent models
.
Endocrinology
.
2010
Jan
;
151
(
1
):
143
52
.
[PubMed]
0013-7227
25.
Balland
E
,
Chen
W
,
Dodd
GT
,
Conductier
G
,
Coppari
R
,
Tiganis
T
, et al.
Leptin Signaling in the Arcuate Nucleus Reduces Insulin's Capacity to Suppress Hepatic Glucose Production in Obese Mice.
Cell Rep.
2019
Jan;26 (2):346-355 e343.
26.
Dodd
GT
,
Decherf
S
,
Loh
K
,
Simonds
SE
,
Wiede
F
,
Balland
E
, et al.
Leptin and insulin act on POMC neurons to promote the browning of white fat
.
Cell
.
2015
Jan
;
160
(
1-2
):
88
104
.
[PubMed]
0092-8674
27.
Zhang
Y
,
Proenca
R
,
Maffei
M
,
Barone
M
,
Leopold
L
,
Friedman
JM
.
Positional cloning of the mouse obese gene and its human homologue
.
Nature
.
1994
Dec
;
372
(
6505
):
425
32
.
[PubMed]
0028-0836
28.
Denroche
HC
,
Huynh
FK
,
Kieffer
TJ
.
The role of leptin in glucose homeostasis
.
J Diabetes Investig
.
2012
Mar
;
3
(
2
):
115
29
.
[PubMed]
2040-1116
29.
Hwa
JJ
,
Fawzi
AB
,
Graziano
MP
,
Ghibaudi
L
,
Williams
P
,
Van Heek
M
, et al.
Leptin increases energy expenditure and selectively promotes fat metabolism in ob/ob mice
.
Am J Physiol
.
1997
Apr
;
272
(
4 Pt 2
):
R1204
9
.
[PubMed]
0002-9513
30.
Berthoud
HR
.
Anatomy and function of sensory hepatic nerves
.
Anat Rec A Discov Mol Cell Evol Biol
.
2004
Sep
;
280
(
1
):
827
35
.
[PubMed]
1552-4884
31.
Carter
ME
,
Soden
ME
,
Zweifel
LS
,
Palmiter
RD
.
Genetic identification of a neural circuit that suppresses appetite
.
Nature
.
2013
Nov
;
503
(
7474
):
111
4
.
[PubMed]
0028-0836
32.
Krahn
DD
,
Gosnell
BA
,
Levine
AS
,
Morley
JE
.
Effects of calcitonin gene-related peptide on food intake
.
Peptides
.
1984
Sep-Oct
;
5
(
5
):
861
4
.
[PubMed]
0196-9781
33.
Weston
C
,
Winfield
I
,
Harris
M
,
Hodgson
R
,
Shah
A
,
Dowell
SJ
, et al.
Receptor Activity-modifying Protein-directed G Protein Signaling Specificity for the Calcitonin Gene-related Peptide Family of Receptors
.
J Biol Chem
.
2016
Oct
;
291
(
42
):
21925
44
.
[PubMed]
0021-9258
34.
Liu
AM
,
Lo
RK
,
Wong
CS
,
Morris
C
,
Wise
H
,
Wong
YH
.
Activation of STAT3 by G alpha(s) distinctively requires protein kinase A, JNK, and phosphatidylinositol 3-kinase
.
J Biol Chem
.
2006
Nov
;
281
(
47
):
35812
25
.
[PubMed]
0021-9258
35.
Wang
W
,
Guo
C
,
Zhu
P
,
Lu
J
,
Li
W
,
Liu
C
, et al.
Phosphorylation of STAT3 mediates the induction of cyclooxygenase-2 by cortisol in the human amnion at parturition
.
Sci Signal
.
2015
Oct
;
8
(
400
):
ra106
.
[PubMed]
1945-0877
36.
Skofitsch
G
,
Jacobowitz
DM
.
Distribution of corticotropin releasing factor-like immunoreactivity in the rat brain by immunohistochemistry and radioimmunoassay: comparison and characterization of ovine and rat/human CRF antisera
.
Peptides
.
1985
Mar-Apr
;
6
(
2
):
319
36
.
[PubMed]
0196-9781
37.
Skofitsch
G
,
Jacobowitz
DM
.
Immunohistochemical mapping of galanin-like neurons in the rat central nervous system
.
Peptides
.
1985
May-Jun
;
6
(
3
):
509
46
.
[PubMed]
0196-9781
38.
Fulwiler
CE
,
Saper
CB
.
Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat
.
Brain Res
.
1984
Aug
;
319
(
3
):
229
59
.
[PubMed]
0006-8993
39.
Li
C
,
Chen
P
,
Smith
MS
.
Identification of neuronal input to the arcuate nucleus (ARH) activated during lactation: implications in the activation of neuropeptide Y neurons
.
Brain Res
.
1999
Apr
;
824
(
2
):
267
76
.
[PubMed]
0006-8993
40.
Simpson
KA
,
Martin
NM
,
Bloom
SR
.
Hypothalamic regulation of appetite
.
Expert Rev Endocrinol Metab
.
2008
Sep
;
3
(
5
):
577
92
.
[PubMed]
1744-6651
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.