The gut-brain axis is of crucial importance for controlling glucose homeostasis. Alteration of this axis promotes the type 2 diabetes (T2D) phenotype (hyperglycaemia, insulin resistance). Recently, a new concept has emerged to demonstrate the crucial role of the enteric nervous system in the control of glycaemia via the hypothalamus. In diabetic patients and mice, modification of enteric neurons activity in the proximal part of the intestine generates a duodenal hyper-contractility that generates an aberrant message from the gut to the brain. In turn, the hypothalamus sends an aberrant efferent message that provokes a state of insulin resistance, which is characteristic of a T2D state. Targeting the enteric nervous system of the duodenum is now recognized as an innovative strategy for treatment of diabetes. By acting in the intestine, bioactive gut molecules that we called “enterosynes” can modulate the function of a specific type of neurons of the enteric nervous system to decrease the contraction of intestinal smooth muscle cells. Here, we focus on the origins of enterosynes (hormones, neurotransmitters, nutrients, microbiota, and immune factors), which could be considered therapeutic factors, and we describe their modes of action on enteric neurons. This unsuspected action of enterosynes is proposed for the treatment of T2D, but it could be applied for other therapeutic solutions that implicate communication between the gut and brain.

1.
Furness
JB
.
The enteric nervous system and neurogastroenterology
.
Nat Rev Gastroenterol Hepatol
.
2012
Mar
;
9
(
5
):
286
94
.
[PubMed]
1759-5045
2.
Gallego
D
,
Mañé
N
,
Gil
V
,
Martínez-Cutillas
M
,
Jiménez
M
.
Mechanisms responsible for neuromuscular relaxation in the gastrointestinal tract
.
Rev Esp Enferm Dig
.
2016
Nov
;
108
(
11
):
721
31
.
[PubMed]
1130-0108
3.
Sharkey
KA
.
Emerging roles for enteric glia in gastrointestinal disorders
.
J Clin Invest
.
2015
Mar
;
125
(
3
):
918
25
.
[PubMed]
0021-9738
4.
Mostafa
RM
,
Moustafa
YM
,
Hamdy
H
.
Interstitial cells of Cajal, the Maestro in health and disease
.
World J Gastroenterol
.
2010
Jul
;
16
(
26
):
3239
48
.
[PubMed]
1007-9327
5.
Abot
A
,
Cani
PD
,
Knauf
C
.
Impact of Intestinal Peptides on the Enteric Nervous System: Novel Approaches to Control Glucose Metabolism and Food Intake
.
Front Endocrinol (Lausanne)
.
2018
Jun
;
9
:
328
.
[PubMed]
1664-2392
6.
Turner
JR
.
Intestinal mucosal barrier function in health and disease
.
Nat Rev Immunol
.
2009
Nov
;
9
(
11
):
799
809
.
[PubMed]
1474-1733
7.
Bush
TG
,
Savidge
TC
,
Freeman
TC
,
Cox
HJ
,
Campbell
EA
,
Mucke
L
, et al.
Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice
.
Cell
.
1998
Apr
;
93
(
2
):
189
201
.
[PubMed]
0092-8674
8.
Furness
JB
,
Kunze
WA
,
Bertrand
PP
,
Clerc
N
,
Bornstein
JC
.
Intrinsic primary afferent neurons of the intestine
.
Prog Neurobiol
.
1998
Jan
;
54
(
1
):
1
18
.
[PubMed]
0301-0082
9.
Mazzuoli
G
,
Schemann
M
.
Multifunctional rapidly adapting mechanosensitive enteric neurons (RAMEN) in the myenteric plexus of the guinea pig ileum
.
J Physiol
.
2009
Oct
;
587
(
Pt 19
):
4681
94
.
[PubMed]
0022-3751
10.
Sababi
M
,
Bengtsson
UH
.
Enhanced intestinal motility influences absorption in anaesthetized rat
.
Acta Physiol Scand
.
2001
Jun
;
172
(
2
):
115
22
.
[PubMed]
0001-6772
11.
McClain
J
,
Grubisic
V
,
Fried
D
,
Gomez-Suarez
RA
,
Leinninger
GM
,
Sevigny
J
,
Parpura
V
,
Gulbransen
BD
: Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. Gastroenterology
2014
;146:497-507 e491.
12.
MacEachern
SJ
,
Patel
BA
,
McKay
DM
,
Sharkey
KA
.
Nitric oxide regulation of colonic epithelial ion transport: a novel role for enteric glia in the myenteric plexus
.
J Physiol
.
2011
Jul
;
589
(
Pt 13
):
3333
48
.
[PubMed]
0022-3751
13.
Ward
SM
,
McLaren
GJ
,
Sanders
KM
.
Interstitial cells of Cajal in the deep muscular plexus mediate enteric motor neurotransmission in the mouse small intestine
.
J Physiol
.
2006
May
;
573
(
Pt 1
):
147
59
.
[PubMed]
0022-3751
14.
Furness
JB
,
Callaghan
BP
,
Rivera
LR
,
Cho
HJ
.
The enteric nervous system and gastrointestinal innervation: integrated local and central control
.
Adv Exp Med Biol
.
2014
;
817
:
39
71
.
[PubMed]
0065-2598
15.
Meldgaard
T
,
Olesen
SS
,
Farmer
AD
,
Krogh
K
,
Wendel
AA
,
Brock
B
, et al.
Diabetic Enteropathy: From Molecule to Mechanism-Based Treatment
.
J Diabetes Res
.
2018
Sep
;
2018
:
3827301
.
[PubMed]
2314-6745
16.
Badizadegan
K
,
Thomas
AR
,
Nagy
N
,
Ndishabandi
D
,
Miller
SA
,
Alessandrini
A
, et al.
Presence of intramucosal neuroglial cells in normal and aganglionic human colon
.
Am J Physiol Gastrointest Liver Physiol
.
2014
Nov
;
307
(
10
):
G1002
12
.
[PubMed]
0193-1857
17.
Tam
PK
.
Hirschsprung’s disease: A bridge for science and surgery
.
J Pediatr Surg
.
2016
Jan
;
51
(
1
):
18
22
.
[PubMed]
0022-3468
18.
Bondurand
N
,
Southard-Smith
EM
.
Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: old and new players
.
Dev Biol
.
2016
Sep
;
417
(
2
):
139
57
.
[PubMed]
0012-1606
19.
Rao
M
,
Gershon
MD
.
The bowel and beyond: the enteric nervous system in neurological disorders
.
Nat Rev Gastroenterol Hepatol
.
2016
Sep
;
13
(
9
):
517
28
.
[PubMed]
1759-5045
20.
Klingelhoefer
L
,
Reichmann
H
.
Pathogenesis of Parkinson disease—the gut-brain axis and environmental factors
.
Nat Rev Neurol
.
2015
Nov
;
11
(
11
):
625
36
.
[PubMed]
1759-4758
21.
Neunlist
M
,
Rolli-Derkinderen
M
,
Latorre
R
,
Van Landeghem
L
,
Coron
E
,
Derkinderen
P
, et al.
Enteric glial cells: recent developments and future directions
.
Gastroenterology
.
2014
Dec
;
147
(
6
):
1230
7
.
[PubMed]
0016-5085
22.
Yarandi
SS
,
Srinivasan
S
.
Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions
.
Neurogastroenterol Motil
.
2014
May
;
26
(
5
):
611
24
.
[PubMed]
1350-1925
23.
Chandrasekharan
B
,
Anitha
M
,
Blatt
R
,
Shahnavaz
N
,
Kooby
D
,
Staley
C
,
Mwangi
S
,
Jones
DP
,
Sitaraman
SV
,
Srinivasan
S
:
Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress.
Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society
2011
;23:131-138, e126.
24.
Fournel
A
,
Drougard
A
,
Duparc
T
,
Marlin
A
,
Brierley
SM
,
Castro
J
, et al.
Apelin targets gut contraction to control glucose metabolism via the brain
.
Gut
.
2017
Feb
;
66
(
2
):
258
69
.
[PubMed]
0017-5749
25.
Abot
A
,
Lucas
A
,
Bautzova
T
,
Bessac
A
,
Fournel
A
,
Le-Gonidec
S
, et al.
Galanin enhances systemic glucose metabolism through enteric Nitric Oxide Synthase-expressed neurons
.
Mol Metab
.
2018
Apr
;
10
:
100
8
.
[PubMed]
2212-8778
26.
Stenkamp-Strahm
CM
,
Nyavor
YE
,
Kappmeyer
AJ
,
Horton
S
,
Gericke
M
,
Balemba
OB
.
Prolonged high fat diet ingestion, obesity, and type 2 diabetes symptoms correlate with phenotypic plasticity in myenteric neurons and nerve damage in the mouse duodenum
.
Cell Tissue Res
.
2015
Aug
;
361
(
2
):
411
26
.
[PubMed]
0302-766X
27.
Choi
KM
,
Gibbons
SJ
,
Nguyen
TV
,
Stoltz
GJ
,
Lurken
MS
,
Ordog
T
,
Szurszewski
JH
,
Farrugia
G
:
Heme oxygenase-1 protects interstitial cells of Cajal from oxidative stress and reverses diabetic gastroparesis.
Gastroenterology
2008
;135:2055-2064, 2064 e2051-2052.
28.
Arciszewski
MB
,
Barabasz
S
,
Całka
J
.
Immunohistochemical localization of galanin receptors (GAL-R1, GAL-R2, and GAL-R3) on myenteric neurons from the sheep and dog stomach
.
Ann Anat
.
2008
;
190
(
4
):
360
7
.
[PubMed]
0940-9602
29.
Sternini
C
,
Anselmi
L
,
Guerrini
S
,
Cervio
E
,
Pham
T
,
Balestra
B
, et al.
Role of galanin receptor 1 in peristaltic activity in the guinea pig ileum
.
Neuroscience
.
2004
;
125
(
1
):
103
12
.
[PubMed]
0306-4522
30.
Chandrasekharan
B
,
Srinivasan
S
.
Diabetes and the enteric nervous system
.
Neurogastroenterol Motil
.
2007
Dec
;
19
(
12
):
951
60
.
[PubMed]
1350-1925
31.
Weber
C
.
Neurogastroenterology: improving glucose tolerance via the gut-brain axis
.
Nat Rev Gastroenterol Hepatol
.
2015
.
[PubMed]
1759-5045
32.
Dray
C
,
Sakar
Y
,
Vinel
C
,
Daviaud
D
,
Masri
B
,
Garrigues
L
, et al.
The intestinal glucose-apelin cycle controls carbohydrate absorption in mice
.
Gastroenterology
.
2013
Apr
;
144
(
4
):
771
80
.
[PubMed]
0016-5085
33.
Huang
Z
,
Luo
X
,
Liu
M
,
Chen
L
.
Function and regulation of apelin/APJ system in digestive physiology and pathology
.
J Cell Physiol
.
2018
.
[PubMed]
0021-9541
34.
Bülbül
M
,
Sinen
O
,
Bayramoğlu
O
,
Akkoyunlu
G
.
Acute restraint stress induces cholecystokinin release via enteric apelin
.
Neuropeptides
.
2019
Feb
;
73
:
71
7
.
[PubMed]
0143-4179
35.
Burcelin
R
,
Cani
PD
,
Knauf
C
.
Glucagon-like peptide-1 and energy homeostasis
.
J Nutr
.
2007
Nov
;
137
(
11
Suppl
):
2534S
8S
.
[PubMed]
0022-3166
36.
Rastelli
M
,
Knauf
C
,
Cani
PD
.
Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders
.
Obesity (Silver Spring)
.
2018
May
;
26
(
5
):
792
800
.
[PubMed]
1930-7381
37.
Claus
SP
.
Will Gut Microbiota Help Design the Next Generation of GLP-1-Based Therapies for Type 2 Diabetes?
Cell Metab
.
2017
Jul
;
26
(
1
):
6
7
.
[PubMed]
1550-4131
38.
Everard
A
,
Cani
PD
.
Gut microbiota and GLP-1
.
Rev Endocr Metab Disord
.
2014
Sep
;
15
(
3
):
189
96
.
[PubMed]
1389-9155
39.
Richards
P
,
Parker
HE
,
Adriaenssens
AE
,
Hodgson
JM
,
Cork
SC
,
Trapp
S
, et al.
Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model
.
Diabetes
.
2014
Apr
;
63
(
4
):
1224
33
.
[PubMed]
0012-1797
40.
Amato
A
,
Cinci
L
,
Rotondo
A
,
Serio
R
,
Faussone-Pellegrini
MS
,
Vannucchi
MG
, et al.
Peripheral motor action of glucagon-like peptide-1 through enteric neuronal receptors
.
Neurogastroenterol Motil
.
2010
Jun
;
22
(
6
):
664
e203
.
[PubMed]
1350-1925
41.
Rotondo
A
,
Amato
A
,
Lentini
L
,
Baldassano
S
,
Mulè
F
.
Glucagon-like peptide-1 relaxes gastric antrum through nitric oxide in mice
.
Peptides
.
2011
Jan
;
32
(
1
):
60
4
.
[PubMed]
0196-9781
42.
Amato
A
,
Baldassano
S
,
Liotta
R
,
Serio
R
,
Mulè
F
.
Exogenous glucagon-like peptide 1 reduces contractions in human colon circular muscle
.
J Endocrinol
.
2014
Mar
;
221
(
1
):
29
37
.
[PubMed]
0022-0795
43.
Washington
MC
,
Raboin
SJ
,
Thompson
W
,
Larsen
CJ
,
Sayegh
AI
.
Exenatide reduces food intake and activates the enteric nervous system of the gastrointestinal tract and the dorsal vagal complex of the hindbrain in the rat by a GLP-1 receptor
.
Brain Res
.
2010
Jul
;
1344
:
124
33
.
[PubMed]
0006-8993
44.
Paton
WD
,
Zar
MA
.
The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips
.
J Physiol
.
1968
Jan
;
194
(
1
):
13
33
.
[PubMed]
0022-3751
45.
Fournel
A
,
Marlin
A
,
Abot
A
,
Pasquio
C
,
Cirillo
C
,
Cani
PD
, et al.
Glucosensing in the gastrointestinal tract: impact on glucose metabolism
.
Am J Physiol Gastrointest Liver Physiol
.
2016
May
;
310
(
9
):
G645
58
.
[PubMed]
0193-1857
46.
Diez-Sampedro
A
,
Hirayama
BA
,
Osswald
C
,
Gorboulev
V
,
Baumgarten
K
,
Volk
C
, et al.
A glucose sensor hiding in a family of transporters
.
Proc Natl Acad Sci USA
.
2003
Sep
;
100
(
20
):
11753
8
.
[PubMed]
0027-8424
47.
Knauf
C
,
Cani
PD
,
Kim
DH
,
Iglesias
MA
,
Chabo
C
,
Waget
A
, et al.
Role of central nervous system glucagon-like Peptide-1 receptors in enteric glucose sensing
.
Diabetes
.
2008
Oct
;
57
(
10
):
2603
12
.
[PubMed]
0012-1797
48.
Knauf
C
,
Cani
PD
,
Perrin
C
,
Iglesias
MA
,
Maury
JF
,
Bernard
E
, et al.
Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage
.
J Clin Invest
.
2005
Dec
;
115
(
12
):
3554
63
.
[PubMed]
0021-9738
49.
Duparc
T
,
Naslain
D
,
Colom
A
,
Muccioli
GG
,
Massaly
N
,
Delzenne
NM
, et al.
Jejunum inflammation in obese and diabetic mice impairs enteric glucose detection and modifies nitric oxide release in the hypothalamus
.
Antioxid Redox Signal
.
2011
Feb
;
14
(
3
):
415
23
.
[PubMed]
1523-0864
50.
Pereira
RV
,
Tronchini
EA
,
Tashima
CM
,
Alves
EP
,
Lima
MM
,
Zanoni
JN
.
L-glutamine supplementation prevents myenteric neuron loss and has gliatrophic effects in the ileum of diabetic rats
.
Dig Dis Sci
.
2011
Dec
;
56
(
12
):
3507
16
.
[PubMed]
0163-2116
51.
Pereira
RV
,
Linden
DR
,
Miranda-Neto
MH
,
Zanoni
JN
.
Differential effects in CGRPergic, nitrergic, and VIPergic myenteric innervation in diabetic rats supplemented with 2% L-glutamine
.
An Acad Bras Cienc
.
2016
;
88
Suppl 1
:
609
22
.
[PubMed]
0001-3765
52.
Hermes-Uliana
C
,
Panizzon
CP
,
Trevizan
AR
,
Sehaber
CC
,
Ramalho
FV
,
Martins
HA
, et al.
Is L-glutathione more effective than L-glutamine in preventing enteric diabetic neuropathy?
Dig Dis Sci
.
2014
May
;
59
(
5
):
937
48
.
[PubMed]
0163-2116
53.
Greenfield
JR
,
Farooqi
IS
,
Keogh
JM
,
Henning
E
,
Habib
AM
,
Blackwood
A
, et al.
Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects
.
Am J Clin Nutr
.
2009
Jan
;
89
(
1
):
106
13
.
[PubMed]
0002-9165
54.
Meek
CL
,
Reimann
F
,
Park
AJ
,
Gribble
FM
.
Can encapsulated glutamine increase GLP-1 secretion, improve glucose tolerance, and reduce meal size in healthy volunteers? A randomised, placebo-controlled, cross-over trial
.
Lancet
.
2015
Feb
;
385
Suppl 1
:
S68
.
[PubMed]
0140-6736
55.
Samocha-Bonet
D
,
Wong
O
,
Synnott
EL
,
Piyaratna
N
,
Douglas
A
,
Gribble
FM
, et al.
Glutamine reduces postprandial glycemia and augments the glucagon-like peptide-1 response in type 2 diabetes patients
.
J Nutr
.
2011
Jul
;
141
(
7
):
1233
8
.
[PubMed]
0022-3166
56.
Reimann
F
,
Williams
L
,
da Silva Xavier
G
,
Rutter
GA
,
Gribble
FM
.
Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells
.
Diabetologia
.
2004
Sep
;
47
(
9
):
1592
601
.
[PubMed]
0012-186X
57.
Tolhurst
G
,
Zheng
Y
,
Parker
HE
,
Habib
AM
,
Reimann
F
,
Gribble
FM
.
Glutamine triggers and potentiates glucagon-like peptide-1 secretion by raising cytosolic Ca2+ and cAMP
.
Endocrinology
.
2011
Feb
;
152
(
2
):
405
13
.
[PubMed]
0013-7227
58.
Nøhr
MK
,
Pedersen
MH
,
Gille
A
,
Egerod
KL
,
Engelstoft
MS
,
Husted
AS
, et al.
GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes
.
Endocrinology
.
2013
Oct
;
154
(
10
):
3552
64
.
[PubMed]
0013-7227
59.
Kaji
I
,
Akiba
Y
,
Konno
K
,
Watanabe
M
,
Kimura
S
,
Iwanaga
T
, et al.
Neural FFA3 activation inversely regulates anion secretion evoked by nicotinic ACh receptor activation in rat proximal colon
.
J Physiol
.
2016
Jun
;
594
(
12
):
3339
52
.
[PubMed]
0022-3751
60.
Kaji
I
,
Akiba
Y
,
Furuyama
T
,
Adelson
DW
,
Iwamoto
K
,
Watanabe
M
, et al.
Free fatty acid receptor 3 activation suppresses neurogenic motility in rat proximal colon
.
Neurogastroenterol Motil
.
2018
Jan
;
30
(
1
):
30
.
[PubMed]
1350-1925
61.
Inoue
D
,
Tsujimoto
G
,
Kimura
I
.
Regulation of Energy Homeostasis by GPR41
.
Front Endocrinol (Lausanne)
.
2014
May
;
5
:
81
.
[PubMed]
1664-2392
62.
Louis
P
,
Flint
HJ
.
Formation of propionate and butyrate by the human colonic microbiota
.
Environ Microbiol
.
2017
Jan
;
19
(
1
):
29
41
.
[PubMed]
1462-2912
63.
Brooks
L
,
Viardot
A
,
Tsakmaki
A
,
Stolarczyk
E
,
Howard
JK
,
Cani
PD
, et al.
Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety
.
Mol Metab
.
2016
Nov
;
6
(
1
):
48
60
.
[PubMed]
2212-8778
64.
Koh
A
,
De Vadder
F
,
Kovatcheva-Datchary
P
,
Bäckhed
F
.
From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites
.
Cell
.
2016
Jun
;
165
(
6
):
1332
45
.
[PubMed]
0092-8674
65.
Frost
G
,
Sleeth
ML
,
Sahuri-Arisoylu
M
,
Lizarbe
B
,
Cerdan
S
,
Brody
L
, et al.
The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism
.
Nat Commun
.
2014
Apr
;
5
(
1
):
3611
.
[PubMed]
2041-1723
66.
Canfora
EE
,
Jocken
JW
,
Blaak
EE
.
Short-chain fatty acids in control of body weight and insulin sensitivity
.
Nat Rev Endocrinol
.
2015
Oct
;
11
(
10
):
577
91
.
[PubMed]
1759-5029
67.
Cani
P.D.
VHM, Lefort C., Depommier C., Rastelli M., Everard A.: Microbial regulation of organismal energy homeostasis. Nature metabolism
2019
;1:34-46.
68.
Asano
Y
,
Hiramoto
T
,
Nishino
R
,
Aiba
Y
,
Kimura
T
,
Yoshihara
K
, et al.
Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice
.
Am J Physiol Gastrointest Liver Physiol
.
2012
Dec
;
303
(
11
):
G1288
95
.
[PubMed]
0193-1857
69.
Scaldaferri
F
,
Nardone
O
,
Lopetuso
LR
,
Petito
V
,
Bibbò
S
,
Laterza
L
, et al.
Intestinal gas production and gastrointestinal symptoms: from pathogenesis to clinical implication
.
Eur Rev Med Pharmacol Sci
.
2013
;
17
Suppl 2
:
2
10
.
[PubMed]
2284-0729
70.
Pimentel
M
,
Mathur
R
,
Chang
C
.
Gas and the microbiome
.
Curr Gastroenterol Rep
.
2013
Dec
;
15
(
12
):
356
.
[PubMed]
1522-8037
71.
Luhachack
L
,
Nudler
E
.
Bacterial gasotransmitters: an innate defense against antibiotics
.
Curr Opin Microbiol
.
2014
Oct
;
21
:
13
7
.
[PubMed]
1369-5274
72.
Jimenez
M
,
Gil
V
,
Martinez-Cutillas
M
,
Mañé
N
,
Gallego
D
.
Hydrogen sulphide as a signalling molecule regulating physiopathological processes in gastrointestinal motility
.
Br J Pharmacol
.
2017
Sep
;
174
(
17
):
2805
17
.
[PubMed]
0007-1188
73.
Bessac
A
,
Cani
PD
,
Meunier
E
,
Dietrich
G
,
Knauf
C
.
Inflammation and Gut-Brain Axis During Type 2 Diabetes: Focus on the Crosstalk Between Intestinal Immune Cells and Enteric Nervous System
.
Front Neurosci
.
2018
Oct
;
12
:
725
.
[PubMed]
1662-4548
74.
Chandrasekharan
B
,
Jeppsson
S
,
Pienkowski
S
,
Belsham
DD
,
Sitaraman
SV
,
Merlin
D
, et al.
Tumor necrosis factor-neuropeptide Y cross talk regulates inflammation, epithelial barrier functions, and colonic motility
.
Inflamm Bowel Dis
.
2013
Nov
;
19
(
12
):
2535
46
.
[PubMed]
1078-0998
75.
Coquenlorge
S
,
Duchalais
E
,
Chevalier
J
,
Cossais
F
,
Rolli-Derkinderen
M
,
Neunlist
M
.
Modulation of lipopolysaccharide-induced neuronal response by activation of the enteric nervous system
.
J Neuroinflammation
.
2014
Dec
;
11
(
1
):
202
.
[PubMed]
1742-2094
76.
Rehn
M
,
Hübschle
T
,
Diener
M
.
TNF-alpha hyperpolarizes membrane potential and potentiates the response to nicotinic receptor stimulation in cultured rat myenteric neurones
.
Acta Physiol Scand
.
2004
May
;
181
(
1
):
13
22
.
[PubMed]
0001-6772
77.
Gougeon
PY
,
Lourenssen
S
,
Han
TY
,
Nair
DG
,
Ropeleski
MJ
,
Blennerhassett
MG
.
The pro-inflammatory cytokines IL-1β and TNFα are neurotrophic for enteric neurons
.
J Neurosci
.
2013
Feb
;
33
(
8
):
3339
51
.
[PubMed]
0270-6474
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.