The alpha2A-adrenoceptors (α2A-ARs) are Gi-coupled receptors, which prejunctionally inhibit the release of norepinephrine (NE) and epinephrine (Epi), and postjunctionally inhibit insulin secretion and lipolysis. We have earlier shown that α2A–/– mice display sympathetic hyperactivity, hyperinsulinemia and improved glucose tolerance. Here we employed α2A–/– mice and placed the mice on a high-fat diet (HFD) to test the hypothesis that lack of α2A-ARs protects from diet-induced obesity and type 2 diabetes (T2D). In addition, a high-caloric diet was combined with running wheel exercise to test the interaction of diet and exercise. HFD was obesogenic in both genotypes, but α2A–/– mice accumulated less visceral fat than the wild-type controls, were protected from T2D, and their insulin secretion was unaltered by the diet. Lack of α2A-ARs is associated with an increased sympatho-adrenal tone, which resulted in increased energy expenditure and fat oxidation rate potentiated by HFD. Fittingly, α2A–/– mice displayed enhanced lipolytic responses to Epi, and increased faecal lipids suggesting altered fat mobilization and absorption. Subcutaneous white fat appeared to be thermogenically more active (measured as Ucp1 mRNA expression) in α2A–/– mice, and brown fat showed an increased response to NE. Exercise was effective in reducing total body adiposity and increasing lean mass in both genotypes, but there was a significant diet-genotype interaction, as even modestly increased physical activity combined with lack of α2A-AR signalling promoted weight loss more efficiently than exercise with normal α2A-AR function. These results suggest that blockade of α2A-ARs may be exploited to reduce visceral fat and to improve insulin secretion.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.