Background/Aims: Zeitgeber time (ZT)-dependent changes in cell proliferation and apoptosis are regulated by melatonin receptor (MT)-mediated signaling in the adult hippocampus and hypothalamic-hypophyseal system. There are two G-protein-coupled MT subtypes, MT1 and MT2. Therefore, the present study examined which MT subtype is required for the regulation of ZT-dependent changes in cell proliferation and/or apoptosis in the adult murine brain and pituitary. Methods: Adult melatonin-proficient (C3H) mice with targeted deletion of MT1 (MT1 KO) or MT2 (MT2 KO) were adapted to a 12-h light/12-h dark photoperiod and sacrificed at ZT00, ZT06, ZT12, and ZT18. Immunohistochemistry for Ki67 or activated caspase-3 served to quantify proliferating and apoptotic cells in the hippocampal subgranular zone (SGZ) and granule cell layer, the hypothalamic median eminence (ME), and the hypophyseal pars tuberalis. Results: ZT-dependent changes in cell proliferation were found exclusively in the SGZ and ME of MT1 KO mice, while apoptosis showed no ZT-dependent changes in the regions analyzed, neither in MT1 nor in MT2 KO mice. Comparison with our previous studies in C3H mice with functional MTs and MT1/2 KO mice revealed that MT2-mediated signaling is required and sufficient for ZT-dependent changes in cell proliferation in the SGZ and ME, while ZT-dependent changes in apoptosis require signaling from both MT subtypes. Conclusions: Our results indicate that generation and timing of ZT-dependent changes in cell proliferation and apoptosis by melatonin require different MT subtype constellations and emphasize the importance to shed light on the specific function of each receptor subtype in different tissues and physiological conditions.

1.
Biebl M, Cooper CM, Winkler J, Kuhn HG: Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult brain. Neurosci Lett 2000; 291: 17–20.
2.
Gage FH, van Praag H: Neurogenesis in adult brain; in Davis KL, Charney D, Coyle JT, Nemeroff C (ed): Neuropsychopharmacology: The Fifth Generation of Progress. American College of Neuropsychopharmacology. Philadelphia, Lippincott Williams and Wilkins, 2002, pp 109–117.
3.
Zhao C, Deng W, Gage FH: Mechanisms and functional implications of adult neurogenesis. Cell 2008; 132: 645–660.
4.
Oishi Y, Okuda M, Takahashi H, Fujii T, Morii S: Cellular proliferation in the anterior pituitary gland of normal adult rats: influences of sex, estrous cycle, and circadian change. Anat Rec 1993; 235: 111–120.
5.
Nolan LA, Kvanagh E, Lightman SL, Levy A: Anterior pituitary cell population control: basal cell turnover and the effects of adrenalectomy and dexamethasone treatment. J Neuroendocrinol 1998; 10: 207–215.
6.
Yin P, Arita J: Differential regulation of prolactin release and lactotrope proliferation during pregnancy, lactation and the estrous cycle. Neuroendocrinology 2000; 72: 72–79.
7.
Kokoeva M, Yin H, Flier JS: Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 2005; 310: 679–683.
8.
Claudius L, Yoshimi Y, Yoichiro H, Gabriel M, Koichi M: Phagocytotic removal of apoptotic endocrine cells by folliculostellate cells and its functional complications in clusterin accumulation in pituitary colloids in helmeted guinea fowl (Numida meleagris). Acta Histochem 2006; 108: 69–80.
9.
Kokoeva M, Yin H, Flier J: Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol 2007; 505: 209–220.
10.
Bennett L, Yang M, Enikolopov G, Iacovitti L: Circumventricular organs: a novel site of neural stem cells in the adult brain. Mol Cell Neurosci 2009; 41: 337–347.
11.
Lee D, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S: Tanycytes of the hypothalamic median eminence form a diet-responsive niche. Nat Neurosci 2012; 5: 700–704.
12.
Morita S, Miyata S: VEGF-dependent continuous angiogenesis in the median eminence of adult mice. Eur J Neurosci 2013; 37: 508–518.
13.
Fredrich M, Christ E, Derouiche A, Korf H-W: Impact of melatonin on Zeitgeber time-dependent changes in cell proliferation and apoptosis in the adult murine hypothalamic-hypophyseal system. Neuroendocrinology 2015; 102: 311–326.
14.
Fredrich M, Hampel M, Seidel K, Christ E, Korf H-W: Impact of melatonin receptor-signaling on Zeitgeber time-dependent changes in cell proliferation and apoptosis in the adult murine hippocampus. Hippocampus 2017; 27: 495–506.
15.
Reiter RJ: Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 1991; 12: 151–180.
16.
Morgan PJ, Williams LM: Central melatonin receptors: implications for a mode of action. Experientia 1989; 45: 955–965.
17.
Reppert SM, Weaver DR, Ebisawa T: Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 1994; 13: 1177–1185.
18.
Dubocovich ML, Markowska M: Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 2005; 27: 101–110.
19.
Dubocovich ML: Role on sleep and circadian rhythm regulation. Sleep Med 2007; 8: 34–42.
20.
Ramírez-Rodríguez G, Klempin F, Babu H, Benítez-King G, Kempermann G: Melatonin modulates cell survival of new neurons in the hippocampus of adult mice. Neuropsychopharmacology 2009; 34: 2180–2191.
21.
Ayoub MA, Couturier C, Lucas-Meunier E, Angers S, Fossier P, Bouvier M, Jockers R: Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J Biol Chem 2002; 277: 21522–21528.
22.
Ayoub MA, Levoye A, Delagrange P, Jockers R: Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers. Mol Pharmacol 2004; 66: 312–321.
23.
Liu C, Weaver D, Jin X, Shearman L, Pieschl R, Gribkoff V, Reppert S: Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 1997; 19: 91–102.
24.
Clemens J, Jarzynka M, Witt-Enderby P: Down-regulation of mt1 melatonin receptors in rat ovary following estrogen exposure. Life Sci 2001; 69: 27–35.
25.
Zalatan F, Krause J, Blask D: Inhibition of isoproterenol-induced lipolysis in rat inguinal adipocytes in vitro by physiological melatonin via a receptor-mediated mechanism. Endocrinology 2001; 142: 3783–3790.
26.
Guerrero J, Reiter R: Melatonin-immune system relationships. Curr Top Med Chem 2002; 2: 167–179.
27.
Masana M, Doolen S, Ersahin C, Al-Ghoul W, Duckles S, Dubocovich M, Krause D: MT(2) melatonin receptors are present and functional in rat caudal artery. J Pharmacol Exp Ther 2002; 302: 1295–1302.
28.
Musshoff U, Riewenherm D, Berger E, Fauteck J-D, Speckmann E-J: Melatonin receptors in rat hippocampus: molevular and functional investigations. Hippocampus 2002; 12: 165–173.
29.
Dubocovich M, Rivera-Bermudez M, Gerdin M, Masana M: Molecular pharmacology, regulation and function of mammalian melatonin receptors. Front Biosci 2003; 8:d1093–d1108.
30.
Naji L, Carrillo-Vico A, Guerrero J, Calvo J: Expression of membrane and nuclear melatonin receptors in mouse peripheral organs. Life Sci 2004; 74: 2227–2236.
31.
Frungieri M, Mayerhofer A, Zitta K, Pignataro O, Calandra R, Gonzalez-Calvar S: Direct effect of melatonin on Syrian hamster testes: melatonin subtype 1a receptors, inhibition of androgen production, and interaction with the local corticotropin-releasing hormone system. Endocrinology 2005; 146: 1541–1552.
32.
Savaskan E, Ayoub MA, Ravid R, Angeloni D, Fraschini F, Meier F, Eckert A, Müller-Spahn F, Jockers R: Reduced hippocampal MT2 melatonin receptor expression in Alzheimer’s disease. J Pineal Res 2005; 38: 10–16.
33.
Ekmekcioglu C: Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother 2006; 60: 97–108.
34.
Imbesi M, Uz T, Dzitoyeva S, Giusti P, Manev H: Melatonin signaling in mouse cerebellar granule cells with variable native MT1 and MT2 melatonin receptors. Brain Res 2008; 1227: 19–25.
35.
Pandi-Perumal SR, Trakht I, Srinivasan V, Spence DW, Maestroni GJM, Zisapel N, Cardinali DP: Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol 2008; 85: 335–353.
36.
Lacoste B, Angeloni D, Dominguez-Lopes S, Calderoni S, Mauro A, Fraschini F, Descarries L, Gobbi G: Anatomical and cellular localization of melatonin MT1 and MT2 receptors in the adult brain. J Pineal Res 2015; 58: 397–417.
37.
Al-Ghoul WM, Herman MD, Dubocovich ML: Melatonin receptor subtype expression in human cerebellum. Neuroreport 1998; 9: 4063–4068.
38.
Savaskan E, Olivieri G, Meier F, Brydon L, Jockers R, Ravid R, Wirz-Justice A, Muller-Spahn F: Increased melatonin 1a-receptor immunoreactivity in the hippocampus of Alz­heimer’s disease patients. J Pineal Res 2002; 32: 59–62.
39.
Thomas L, Purvis CC, Drew JE, Abramovich DR, Williams LM: Melatonin receptors in human fetal brain: 2-([125]I)iodomelatonin binding and MT1 gene expression. J Pineal Res 2002; 33: 218–224.
40.
Uz T, Arslan AD, Kurtuncu M, Imbesi M, Akhisaroglu M, Dwivedi Y, Pandey GN, Manev H: The regional and cellular expression profile of the melatonin receptor MT1 in the central dopaminergic system. Brain Res Mol Brain Res 2005; 136: 45–53.
41.
Brunner P, Sozer-Topcular N, Jockers R, Ravid R, Angeloni D, Fraschini F, Eckert A, Muller-Spahn F, Savaskan E: Pineal and cortical melatonin receptors MT1 and MT2 are decreased in Alzheimer’s disease. Eur J Histochem 2006; 50: 311–316.
42.
Wu YH, Zhou JN, Balesar R, Unmehopa U, Bao A, Jockers R, Van Heerikhuize J, Swaab DF: Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: colocalization of MT1 with vasopressin, oxytocin, and corticotrophin-releasing hormone. J Comp Neurol 2006; 499: 897–910.
43.
Jimenez-Jorge S, Guerrero JM, Jimenez-Caliani J, Naranjo MC, Lardone PJ, Carrillo-Vico A, Osuna C, Molinero P: Evidence for melatonin synthesis in the rat brain during development. J Pineal Res 2007; 42: 240–246.
44.
Wu YH, Zhou JN, Van Heerikhuize J, Jockers R, Swaab DF: Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease. Neurobiol Aging 2007; 28: 1239–1247.
45.
Drazen D, Bilu D, Bilbo S, Nelson R: Melatonin enhancement of splenocyte proliferation is attenuated by luzindole, a melatonin receptor antagonist. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1476–R1482.
46.
Drazen D, Nelson R: Melatonin receptor subtype MT2 (Mel 1b) and not mt1 (Mel 1a) is associated with melatonin-induced enhancement of cell-mediated and humoral immunity. Neuroendocrinology 2001; 74: 178–184.
47.
Jin X, von Gall C, Pieschl R, Gribkoff V, Stehle J, Reppert S, Weaver D: Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol Cell Biol 2003; 23: 1054–1060.
48.
Gerdin M, Masana M, Rivera-Bermúdez M, Hudson R, Earnest D, Gillette M, Dubocovich M: Melatonin desensitizes endogenous MT2 melatonin receptors in the rat suprachiasmatic nucleus: relevance for defining the periods of sensitivity of the mammalian circadian clock to melatonin. FASEB J 2004; 18: 1646–1656.
49.
Dubocovich M, Hudson R, Sumaya I, Masana M, Manna E: Effect of MT1 melatonin receptor deletion on melatonin-mediated phase shift of circadian rhythms in the C57BL/6 mouse. J Pineal Res 2005; 39: 113–120.
50.
Von Gall C, Weaver D, Moek J, Jilg A, Stehle J, Korf H: Melatonin plays a crucial role in the regulation of rhythmic clock gene expression in the mouse pars tuberalis. Ann NYAcad Sci 2005; 1040: 508–511.
51.
Larson J, Jessen R, Uz T, Arslan A, Kurtuncu M, Imbesi M, Manev H: Impaired hippocampal long-term potentiation in melatonin MT2 receptor-deficient mice. Neurosci Lett 2006; 393: 23–26.
52.
Weil Z, Hotchkiss A, Gatien M, Pieke-Dahl S, Nelson R: Melatonin receptor (MT1) knockout mice display depression-like behaviors and deficits in sensorimotor gating. Brain Res Bull 2006; 68: 425–429.
53.
Kim M-J, Kim HK, Kim B-S, Yim S-V: Melatonin increases cell proliferation in the dentate gyrus of maternally separated rats. J Pineal Res 2004; 37: 193–197.
54.
Rennie K, De Butte M, Pappas BA: Melatonin promotes neurogenesis in dentate gyrus in the pinealectomized rat. J Pineal Res 2009; 47: 313–317.
55.
Ramírez-Rodríguez G, Ortíz-López L, Domínguez-Alonso A, Benítez-King GA, Kempermann G: Chronic treatment with melatonin stimulates dendrite maturation and complexity in adult hippocampal neurogenesis of mice. J Pineal Res 2011; 50: 29–37.
56.
Liu J, Somera-Molina KC, Hudson RL, Dubocovich ML: Melatonin potentiates running wheel-induced neurogenesis in the dentate gyrus of adult C3H/HeN mice hippocampus. J Pineal Res 2013; 54: 222–231.
57.
Ortiz-López L, Pérez-Beltran C, Ramírez-Rodríguez G: Chronic administration of a melatonin membrane receptor antagonist, luzindole, affects hippocampal neurogenesis without changes in hopelessness-like behavior in adult mice. Neuropharmacology 2016; 103: 211–221.
58.
Baydas G, Reiter RJ, Akbulut RM, Tuzcu M, Tamer S: Melatonin inhibits neural apoptosis in hippocampus of rats via inhibition of cytochrome c translocation and caspase-3 activation and by regulating pro- and anti-apoptotic protein levels. Neurosci 2005; 135: 879–886.
59.
De Butte M, Pappas BA: Pinealectomy causes hippocampal CA1 and CA3 cell loss: reversal by melatonin supplementation. Neurobiol Aging 2007; 28: 306–313.
60.
Kus MA, Sarsilmaz M, Karaca O, Acar T, Gülcen B, Hismiogullari AA, Ogeturk M, Kus I: Effects of melatonin hormone on hippocampus in pinealectomized rats: an immunohistochemical and biochemical study. Neuroendocrinol Lett 2013; 34: 418–425.
61.
Gerdes J, Lemke H, Baisch H, Wacker H-H, Schwab U, Stein H: Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki67. J Immunol 1984; 133: 1710–1715.
62.
Gerdes J, Li L, Schlueter C, Duchrow M, Wohlenberg C, Gerlach C, Stahmer I, Kloth S, Brandt E, Flad H-D: Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am J Pathol 1991; 138: 867–873.
63.
Endl E, Gerdes J: The Ki-67 protein: fascinating forms and an unknown function. Exp Cell Res 2000; 257: 231–237.
64.
Scholzen T, Gerdes J: The Ki67-protein: from the known to the unknown. J Cell Physiol 2000; 182: 311–322.
65.
Häcker G: The morphology of apoptosis. Cell Tissue Res 2000; 301: 5–17.
66.
Duan WR, Gamer DS, Williams SD, Funckes-Shippy CL, Spath IS, Blomme EAG: Comparison of immunohistochemistry for activated caspase-3 and cleaved cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological sections of PC-3 subcutaneous xenografts. J Pathol 2003; 199: 221–228.
67.
Elmore S: Apoptosis: a review of programmed cell death. Toxicol Pathol 2007; 35: 495–516.
68.
Chern CM, Liao JF, Wang YH, Shen YC: Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice. Free Radic Biol Med 2012; 52: 1634–1647.
69.
Fu J, Zhao S-D, Liu H-J, Yuan Q-H, Liu S-M, Zhang Y-M, Ling E-A, Hao A-J: Melatonin promotes proliferation and differentiation of neural stem cells subjected to hypoxia in vitro. J Pineal Res 2011; 51: 104–112.
70.
Jiao S, Wu M-M, Hu C-L, Zhang Z-H, Mei Y-A: Melatonin receptor agonist 2-iodomelatonin prevents apoptosis of cerebellar granule neurons via K(+) current inhibition. Pineal Res 2004; 36: 109–116.
71.
Kong X, Li X, Cai Z, Yang N, Liu Y, Shu J, Pan L, Zuo P: Melatonin regulates the viability and differentiation of rat midbrain neural stem cells. Cell Mol Neurobiol 2008; 28: 569–579.
72.
Radogna F, Cristofanon S, Paternoster L, D’Alessio M, De Nicola M, Cerella C, Dicato M, Diederich M, Ghibelli L: Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bcl-2. J Pineal Res 2008; 44: 316–325.
73.
Espino J, Ortiz Á, Bejarano I, Lozano GM, Monllor F, García JF, Rodríguez AB, Pariente JA: Melatonin protects human spermatozoa from apoptosis via melatonin receptor- and extracellular signal-regulated kinase-mediated pathways. Fertil Steril 2011; 95: 2290–2296.
74.
Bordt SL, McKeon RM, Li PK, Witt-Enderby PA, Melan MA: N1E-115 mouse neuroblastoma cells express MT1 melatonin receptors and produce neurites in response to melatonin. Biochim Biophys Acta 2001; 1499: 257–264.
75.
Chan AS, Lai FP, Lo RK, Voyno-Yasenetskaya TA, Stanbridge EJ, Wong YH: Melatonin mt1 and MT2 receptors stimulate c-Jun N-terminal kinase via pertussis toxin-sensitive and -insensitive G proteins. Cell Signal 2002; 14: 249–257.
76.
Cui P, Yu M, Luo Z, Dai M, Han J, Xiu R, Yang Z: Intracellular signaling pathways involved in cell growth inhibition of human umbilical vein endothelial cells by melatonin. J Pineal Res 2008; 44: 107–114.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.