Abstract
The genetic control of puberty remains an important but mostly unanswered question. Late pubertal timing affects over 2% of adolescents and is associated with adverse health outcomes including short stature, reduced bone mineral density, and compromised psychosocial health. Self-limited delayed puberty (DP) is a highly heritable trait, which often segregates in an autosomal dominant pattern; however, its neuroendocrine pathophysiology and genetic regulation remain unclear. Some insights into the genetic mutations that lead to familial DP have come from sequencing genes known to cause gonadotropin-releasing hormone (GnRH) deficiency, most recently via next-generation sequencing, and others from large-scale genome-wide association studies in the general population. Investigation of the genetic control of DP is complicated by the fact that this trait is not rare and that the phenotype is likely to represent a final common pathway, with a variety of different pathogenic mechanisms affecting the release of the puberty “brake.” These include abnormalities of GnRH neuronal development and function, GnRH receptor and luteinizing hormone/follicle-stimulating hormone abnormalities, metabolic and energy homeostatic derangements, and transcriptional regulation of the hypothalamic-pituitary-gonadal axis. Thus, genetic control of pubertal timing can range from early fetal life via development of the GnRH network to those factors directly influencing the puberty brake during mid-childhood.