Background/Aims: The tumor suppressor p53 is depleted in many tumor cells by the E3 ubiquitin ligase mouse double minute 2 homolog (MDM2) through MDM2/p53 interaction. A novel target for inhibiting p53 degradation and for causing reexpression of p53wild type is inhibition of MDM2. The small molecule NVP-CGM097 is a novel MDM2 inhibitor. We investigated MDM2 inhibition as a target in neuroendocrine tumor cells in vitro. Methods: Human neuroendocrine tumor cell lines from the pancreas (BON1), lung (NCI-H727), and midgut (GOT1) were incubated with the MDM2 inhibitor NVP-CGM097 (Novartis) at concentrations from 4 to 2,500 nM. Results: While p53wild type GOT1 cells were sensitive to NVP-CGM097, p53mutated BON1 and p53mutated NCI-H727 cells were resistant to NVP-CGM097. Incubation of GOT1 cells with NVP-CGM097 at 100, 500, and 2,500 nM for 96 h caused a significant decline in cell viability to 84.9 ± 9.2% (p < 0.05), 77.4 ± 6.6% (p < 0.01), and 47.7 ± 9.2% (p < 0.01). In a Western blot analysis of GOT1 cells, NVP-CGM097 caused a dose-dependent increase in the expression of p53 and p21 tumor suppressor proteins and a decrease in phospho-Rb and E2F1. Experiments of co-incubation of NVP-CGM097 with 5-fluorouracil, temozolomide, or everolimus each showed additive antiproliferative effects in GOT1 cells. NVP-CGM097 and 5-fluorouracil increased p53 and p21 expression in an additive manner. Conclusions: MDM2 inhibition seems a promising novel therapeutic target in neuroendocrine tumors harboring p53wild type. Further investigations should examine the potential role of MDM2 inhibitors in neuroendocrine tumor treatment.

1.
Frilling A, Akerström G, Falconi M, Pavel M, Ramos J, Kidd M, et al: Neuroendocrine tumor disease: an evolving landscape. Endocr Relat Cancer 2012;19:R163-R185.
2.
Öberg K, Casanovas O, Castaño JP, Chung D, Delle Fave G, Denèfle P, et al: Molecular pathogenesis of neuroendocrine tumors: implications for current and future therapeutic approaches. Clin Cancer Res 2013;19:2842-2849.
3.
Öberg K, Hellman P, Ferolla P, Papotti M; ESMO Guidelines Working Group: Neuroendocrine bronchial and thymic tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012;23(suppl 7):vii120-vii123.
4.
Öberg K, Knigge U, Kwekkeboom D, Perren A; ESMO Guidelines Working Group: Neuroendocrine gastro-entero-pancreatic tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012;23(suppl 7):vii124-vii130.
5.
Pavel M: Translation of molecular pathways into clinical trials of neuroendocrine tumors. Neuroendocrinology 2013;97:99-112.
6.
Dong M, Phan AT, Yao JC: New strategies for advanced neuroendocrine tumors in the era of targeted therapy. Clin Cancer Res 2012;18:1830-1836.
7.
Kulke MH, Shah MH, Benson AB 3rd, Bergsland E, Berlin JD, Blaszkowsky LS, et al: Neuroendocrine tumors, version 1.2015. J Natl Compr Canc Netw 2015;13:78-108.
8.
Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al: Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 2011;364:514-523.
9.
Raymond E, Dahan L, Raoul J-L, Bang Y-J, Borbath I, Lombard-Bohas C, et al: Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 2011;364:501-513.
10.
Yao JC, Fazio N, Singh S, Buzzoni R, Carnaghi C, Wolin E, et al: Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 2016;387:968-977.
11.
Brown CJ, Cheok CF, Verma CS, Lane DP: Reactivation of p53: from peptides to small molecules. Trends Pharmacol Sci 2011;32:53-62.
12.
Li Q, Lozano G: Molecular pathways: targeting Mdm2 and Mdm4 in cancer therapy. Clin Cancer Res 2013;19:34-41.
13.
Zak K, Pecak A, Rys B, Wladyka B, Dömling A, Weber L, et al: Mdm2 and MdmX inhibitors for the treatment of cancer: a patent review (2011-present). Expert Opin Ther Pat 2013;23:425-448.
14.
Burgess A, Chia KM, Haupt S, Thomas D, Haupt Y, Lim E: Clinical overview of MDM2/X-targeted therapies. Front Oncol 2016;6:7.
15.
Jeay S, Gaulis S, Ferretti S, Bitter H, Ito M, Valat T, et al: A distinct p53 target gene set predicts for response to the selective p53-HDM2 inhibitor NVP-CGM097. Elife 2015;4:e06498.
16.
Valat T, Masuya K, Baysang F, Albrecht G, Buschmann N, Erdmann D, et al: Mechanistic study of NVP-CGM097: a potent, selective and species specific inhibitor of p53-Mdm2. Cancer Res 2014;74(suppl):abstract 1798.
17.
Masuya K, Furet P, Stutz S, Holzer P, Pissot-Soldmann C, Buschmann N, et al: Discovery of CGM097 as a novel Mdm2 inhibitor. Cancer Res 2014;74(suppl):abstract DDT01-01.
18.
Briest F, Grabowski P: The p53 network as therapeutic target in gastroenteropancreatic neuroendocrine neoplasms. Cancer Treat Rev 2015;41:423-430.
19.
Briest F, Grass I, Christen F, Lewens F, Freitag H, Kaemmerer D, et al: Role of MDM2 as therapeutic target in gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) (abstract 455). Eur J Cancer 2014;50(suppl 6):149.
20.
Hu W, Feng Z, Modica I, Klimstra DS, Song L, Allen PJ, et al: Gene amplifications in well-differentiated pancreatic neuroendocrine tumors inactivate the p53 pathway. Genes Cancer 2010;1:360-368.
21.
Banck MS, Kanwar R, Kulkarni AA, Boora GK, Metge F, Kipp BR, et al: The genomic landscape of small intestine neuroendocrine tumors. J Clin Invest 2013;123:2502-2508.
22.
Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al: DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011;331:1199-1203.
23.
Nenutil R, Smardova J, Pavlova S, Hanzelkova Z, Muller P, Fabian P, et al: Discriminating functional and non-functional p53 in human tumours by p53 and MDM2 immunohistochemistry. J Pathol 2005;207:251-259.
24.
Bellini MF, Cadamuro ACT, Succi M, Proença MA, Silva AE: Alterations of the TP53 gene in gastric and esophageal carcinogenesis. J Biomed Biotechnol 2012;2012:891961.
25.
Watanabe G, Ishida T, Furuta A, Takahashi S, Watanabe M, Nakata H, et al: Combined immunohistochemistry of PLK1, p21, and p53 for predicting TP53 status: an independent prognostic factor of breast cancer. Am J Surg Pathol 2015;39:1026-1034.
26.
Takizawa N, Ohishi Y, Hirahashi M, Takahashi S, Nakamura K, Tanaka M, et al: Molecular characteristics of colorectal neuroendocrine carcinoma; similarities with adenocarcinoma rather than neuroendocrine tumor. Hum Pathol 2015;46:1890-1900.
27.
Yildirim M, Kaya V, Demirpence O, Gunduz S, Bozcuk H: Prognostic significance of p53 in gastric cancer: a meta-analysis. Asian Pac J Cancer Prev 2015;16:327-332.
28.
Wei K, Jiang L, Wei Y, Wang Y, Qian X, Dai Q, et al: The prognostic significance of p53 expression in gastric cancer: a meta-analysis. J Cancer Res Clin Oncol 2015;141:735-748.
29.
McCormick Matthews LH, Noble F, Tod J, Jaynes E, Harris S, Primrose JN, et al: Systematic review and meta-analysis of immunohistochemical prognostic biomarkers in resected oesophageal adenocarcinoma. Br J Cancer 2015;113:107-118.
30.
Zhan P, Ji Y-N: Prognostic significance of TP53 expression for patients with hepatocellular carcinoma: a meta-analysis. Hepatobiliary Surg Nutr 2014;3:11-17.
31.
Kımıloğlu Şahan E, Erdoğan N, Ulusoy İ, Samet E, Akyıldız İğdem A, Gönüllü D: P53, KI-67, CD117 expression in gastrointestinal and pancreatic neuroendocrine tumours and evaluation of their correlation with clinicopathological and prognostic parameters. Turk J Gastroenterol 2015;26:104-111.
32.
Naranjo Gómez JM, Bernal JF, Arranz PG, Fernández SL, Roman JJ: Alterations in the expression of p53, KLF4, and p21 in neuroendocrine lung tumors. Arch Pathol Lab Med 2014;138:936-942.
33.
Swarts DRA, Ramaekers FCS, Speel E-JM: Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities. Biochim Biophys Acta 2012;1826:255-271.
34.
George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, et al: Comprehensive genomic profiles of small cell lung cancer. Nature 2015;524:47-53.
35.
Saiki AY, Caenepeel S, Cosgrove E, Su C, Boedigheimer M, Oliner JD: Identifying the determinants of response to MDM2 inhibition. Oncotarget 2015;6:7701-7712.
36.
Lee HS, Chen M, Kim JH, Kim WH, Ahn S, Maeng K, et al: Analysis of 320 gastroenteropancreatic neuroendocrine tumors identifies TS expression as independent biomarker for survival. Int J Cancer 2014;135:128-137.
37.
Spampatti M, Vlotides G, Spöttl G, Maurer J, Göke B, Auernhammer CJ: Aspirin inhibits cell viability and mTOR downstream signaling in gastroenteropancreatic and bronchopulmonary neuroendocrine tumor cells. World J Gastroenterol 2014;20:10038-10049.
38.
Evers BM, Townsend CM Jr, Upp JR, Allen E, Hurlbut SC, Kim SW, et al: Establishment and characterization of a human carcinoid in nude mice and effect of various agents on tumor growth. Gastroenterology 1991;101:303-311.
39.
Babu V, Paul N, Yu R: Animal models and cell lines of pancreatic neuroendocrine tumors. Pancreas 2013;42:912-923.
40.
Kölby L, Bernhardt P, Ahlman H, Wängberg B, Johanson V, Wigander A, et al: A transplantable human carcinoid as model for somatostatin receptor-mediated and amine transporter-mediated radionuclide uptake. Am J Pathol 2001;158:745-755.
41.
Schuller HM, Falzon M, Gazdar AF, Hegedus T: Cell type-specific differences in metabolic activation of N-nitrosodiethylamine by human lung cancer cell lines. IARC Sci Publ 1987;84:138-140.
42.
Cakir M, Grossman A: The molecular pathogenesis and management of bronchial carcinoids. Expert Opin Ther Targets 2011;15:457-491.
43.
Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al: Cabozantinib and tivantinib, but not INC280, induce anti-proliferative and anti-migratory effects in human neuroendocrine tumour cells in vitro: evidence for “off-target” effects not mediated by c-Met inhibition. Neuroendocrinology 2016;103:383-401.
44.
Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, et al: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Hum Mutat 2007;28:622-629.
45.
Du W, Wu J, Walsh EM, Zhang Y, Chen CY, Xiao Z-XJ: Nutlin-3 affects expression and function of retinoblastoma protein: role of retinoblastoma protein in cellular response to nutlin-3. J Biol Chem 2009;284:26315-26321.
46.
Laine A, Westermarck J: Molecular pathways: harnessing E2F1 regulation for prosenescence therapy in p53-defective cancer cells. Clin Cancer Res 2014;20:3644-3650.
47.
Brooks CL, Li M, Hu M, Shi Y, Gu W: The p53-Mdm2-HAUSP complex is involved in p53 stabilization by HAUSP. Oncogene 2007;26:7262-7266.
48.
Kon N, Kobayashi Y, Li M, Brooks CL, Ludwig T, Gu W: Inactivation of HAUSP in vivo modulates p53 function. Oncogene 2010;29:1270-1279.
49.
Tang J, Qu L, Pang M, Yang X: Daxx is reciprocally regulated by Mdm2 and Hausp. Biochem Biophys Res Commun 2010;393:542-545.
50.
Sun X-X, Dai M-S, Lu H: 5-Fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. J Biol Chem 2007;282:8052-8059.
51.
Kulke MH, Hornick JL, Frauenhoffer C, Hooshmand S, Ryan DP, Enzinger PC, et al: O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin Cancer Res 2009;15:338-345.
52.
Walter T, van Brakel B, Vercherat C, Hervieu V, Forestier J, Chayvialle J-A, et al: O6-methylguanine-DNA methyltransferase status in neuroendocrine tumours: prognostic relevance and association with response to alkylating agents. Br J Cancer 2015;112:523-531.
53.
Costa B, Bendinelli S, Gabelloni P, Da Pozzo E, Daniele S, Scatena F, et al: Human glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor. PLoS One 2013;8:e72281.
54.
Bocangel D, Sengupta S, Mitra S, Bhakat KK: p53-mediated down-regulation of the human DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) via interaction with Sp1 transcription factor. Anticancer Res 2009;29:3741-3750.
55.
Hermisson M, Klumpp A, Wick W, Wischhusen J, Nagel G, Roos W, et al: O6-methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells. J Neurochem 2006;96:766-776.
56.
Natsume A, Ishii D, Wakabayashi T, Tsuno T, Hatano H, Mizuno M, et al: IFN-β down-regulates the expression of DNA repair gene MGMT and sensitizes resistant glioma cells to temozolomide. Cancer Res 2005;65:7573-7579.
57.
Natsume A, Wakabayashi T, Ishii D, Maruta H, Fujii M, Shimato S, et al: A combination of IFN-β and temozolomide in human glioma xenograft models: implication of p53-mediated MGMT downregulation. Cancer Chemother Pharmacol 2008;61:653-659.
58.
Kim S-S, Rait A, Kim E, Pirollo KF, Nishida M, Farkas N, et al: A nanoparticle carrying the p53 gene targets tumors including cancer stem cells, sensitizes glioblastoma to chemotherapy and improves survival. ACS Nano 2014;8:5494-5514.
59.
Kao C-L, Hsu H-S, Chen H-W, Cheng T-H: Rapamycin increases the p53/MDM2 protein ratio and p53-dependent apoptosis by translational inhibition of mdm2 in cancer cells. Cancer Lett 2009;286:250-259.
60.
Du W, Yi Y, Zhang H, Bergholz J, Wu J, Ying H, et al: Rapamycin inhibits IGF-1-mediated up-regulation of MDM2 and sensitizes cancer cells to chemotherapy. PLoS One 2013;8:e63179.
61.
Goudarzi KM, Nistér M, Lindström MS: mTOR inhibitors blunt the p53 response to nucleolar stress by regulating RPL11 and MDM2 levels. Cancer Biol Ther 2014;15:1499-1514.
62.
Selvarajah J, Nathawat K, Moumen A, Ashcroft M, Carroll VA: Chemotherapy-mediated p53-dependent DNA damage response in clear cell renal cell carcinoma: role of the mTORC1/2 and hypoxia-inducible factor pathways. Cell Death Dis 2013;4:e865.
63.
Chatterjee A, Mukhopadhyay S, Tung K, Patel D, Foster DA: Rapamycin-induced G1 cell cycle arrest employs both TGF-β and Rb pathways. Cancer Lett 2015;360:134-140.
64.
Rinke A, Müller H-H, Schade-Brittinger C, Klose K-J, Barth P, Wied M, et al: Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 2009;27:4656-4663.
65.
Rinke A, Wittenberg M, Schade-Brittinger C, Aminossadati B, Ronicke E, Gress TM, et al: Placebo controlled, double blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors (PROMID): results of long-term survival. Neuroendocrinology 2017;104:26-32.
66.
Caplin ME, Pavel M, Ćwikła JB, Phan AT, Raderer M, Sedláčková E, et al: Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med 2014;371:224-233.
67.
Caplin M, Pavel M, Ćwikła JB, Phan A, Raderer M, Sedláčková E, et al: Anti-tumour effects of lanreotide for pancreatic and intestinal neuroendocrine tumours: the CLARINET open-label extension study. Endocr Relat Cancer 2016;23:191-199.
68.
Pavel M, O'Toole D, Costa F, Capdevila J, Gross D, Kianmanesh R, et al: ENETS Consensus Guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology 2016;103:172-185.
69.
Zitzmann K, Andersen S, Vlotides G, Spöttl G, Zhang S, Datta R, et al: The novel somatostatin receptor 2/dopamine type 2 receptor chimeric compound BIM-23A758 decreases the viability of human GOT1 midgut carcinoid cells. Neuroendocrinology 2013;98:128-136.
70.
Nilsson O, Kölby L, Bernhardt P, Forssell- Aronsson E, Johanson V, Ahlman H: GOT1 xenografted to nude mice: a unique model for in vivo studies on SSTR-mediated radiation therapy of carcinoid tumors. Ann NY Acad Sci 2004;1014:275-279.
71.
Kölby L, Bernhardt P, Johanson V, Schmitt A, Ahlman H, Forssell-Aronsson E, et al: Successful receptor-mediated radiation therapy of xenografted human midgut carcinoid tumour. Br J Cancer 2005;93:1144-1151.
72.
Swärd C, Bernhardt P, Johanson V, Schmitt A, Ahlman H, Stridsberg M, et al: Comparison of [177Lu-DOTA0,Tyr3]-octreotate and [177Lu-DOTA0,Tyr3]-octreotide for receptor-mediated radiation therapy of the xenografted human midgut carcinoid tumor GOT1. Cancer Biother Radiopharm 2008;23:114-120.
73.
Oddstig J, Bernhardt P, Lizana H, Nilsson O, Ahlman H, Kölby L, et al: Inhomogeneous activity distribution of 177Lu-DOTA0-Tyr3-octreotate and effects on somatostatin receptor expression in human carcinoid GOT1 tumors in nude mice. Tumour Biol 2012;33:229-239.
74.
Canon J, Osgood T, Olson SH, Saiki AY, Robertson R, Yu D, et al: The MDM2 inhibitor AMG 232 demonstrates robust antitumor efficacy and potentiates the activity of p53-inducing cytotoxic agents. Mol Cancer Ther 2015;14:649-658.
75.
Vandamme T, Peeters M, Dogan F, Pauwels P, Van Assche E, Beyens M, et al: Whole-exome characterization of pancreatic neuroendocrine tumor cell lines BON-1 and QGP-1. J Mol Endocrinol 2015;54:137-147.
76.
Engelmann D, Pützer BM: Emerging from the shade of p53 mutants: N-terminally truncated variants of the p53 family in EMT signaling and cancer progression. Sci Signal 2014;7:re9.
77.
Surget S, Khoury MP, Bourdon J-C: Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. Onco Targets Ther 2013;7:57-68.
78.
Boora GK, Kanwar R, Kulkarni AA, Pleticha J, Ames M, Schroth G, et al: Exome-level comparison of primary well-differentiated neuroendocrine tumors and their cell lines. Cancer Genet 2015;208:374-381.
79.
Vandamme T, Beyens M, Peeters M, Van Camp G, de Beeck KO: Next generation exome sequencing of pancreatic neuroendocrine tumor cell lines BON-1 and QGP-1 reveals different lineages. Cancer Genet 2015;208:523.
80.
Dick FA, Rubin SM: Molecular mechanisms underlying RB protein function. Nat Rev Mol Cell Biol 2013;14:297-306.
81.
Gillam MP, Nimbalkar D, Sun L, Christov K, Ray D, Kaldis P, et al: MEN1 tumorigenesis in the pituitary and pancreatic islet requires Cdk4 but not Cdk2. Oncogene 2015;34:932-938.
82.
Tang LH, Contractor T, Clausen R, Klimstra DS, Du Y-CN, Allen PJ, et al: Attenuation of the retinoblastoma pathway in pancreatic neuroendocrine tumors due to increased cdk4/cdk6. Clin Cancer Res 2012;18:4612-4620.
83.
Picksley SM, Lane DP: The p53-mdm2 autoregulatory feedback loop: a paradigm for the regulation of growth control by p53? Bioessays 1993;15:689-690.
84.
Wu X, Bayle JH, Olson D, Levine AJ: The p53-mdm-2 autoregulatory feedback loop. Genes Dev 1993;7:1126-1132.
85.
Freedman DA, Wu L, Levine AJ: Functions of the MDM2 oncoprotein. Cell Mol Life Sci 1999;55:96-107.
86.
Holzer P, Masuya K, Furet P, Kallen J, Valat-Stachyra T, Ferretti S, et al: Discovery of a dihydroisoquinolinone derivative (NVP-CGM097): a highly potent and selective MDM2 inhibitor undergoing phase 1 clinical trials in p53wt tumors. J Med Chem 2015;58:6348-6358.
87.
Weisberg E, Halilovic E, Cooke VG, Nonami A, Ren T, Sanda T, et al: Inhibition of wild-type p53-expressing AML by the novel small molecule HDM2 inhibitor CGM097. Mol Cancer Ther 2015;14:2249-2259.
88.
Hay TJ, Meek DW: Multiple sites of in vivo phosphorylation in the MDM2 oncoprotein cluster within two important functional domains. FEBS Lett 2000;478:183-186.
89.
Mayo LD, Donner DB: A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 2001;98:11598-11603.
90.
Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC: HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 2001;3:973-982.
91.
Tang J, Qu L-K, Zhang J, Wang W, Michaelson JS, Degenhardt YY, et al: Critical role for Daxx in regulating Mdm2. Nat Cell Biol 2006;8:855-862.
92.
Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C, et al: Altered telomeres in tumors with ATRX and DAXX mutations. Science 2011;333:425.
93.
Tang M, Li Y, Zhang Y, Chen Y, Huang W, Wang D, et al: Disease mutant analysis identifies a new function of DAXX in telomerase regulation and telomere maintenance. J Cell Sci 2015;128:331-341.
94.
Marinoni I, Kurrer AS, Vassella E, Dettmer M, Rudolph T, Banz V, et al: Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology 2014;146:453-460.e5.
95.
Brazina J, Svadlenka J, Macurek L, Andera L, Hodny Z, Bartek J, et al: DNA damage-induced regulatory interplay between DAXX, p53, ATM kinase and Wip1 phosphatase. Cell Cycle 2015;14:375-387.
96.
Jiang G, Jiang A-J, Xin Y, Li L-T, Cheng Q, Zheng J-N: Progression of O6-methylguanine-DNA methyltransferase and temozolomide resistance in cancer research. Mol Biol Rep 2014;41:6659-6665.
97.
Schmitt AM, Pavel M, Rudolph T, Dawson H, Blank A, Komminoth P, et al: Prognostic and predictive roles of MGMT protein expression and promoter methylation in sporadic pancreatic neuroendocrine neoplasms. Neuroendocrinology 2014;100:35-44.
98.
Miao W, Liu X, Wang H, Fan Y, Lian S, Yang X, et al: p53 upregulated modulator of apoptosis sensitizes drug-resistant U251 glioblastoma stem cells to temozolomide through enhanced apoptosis. Mol Med Rep 2015;11:4165-4173.
99.
Zitzmann K, Vlotides G, Brand S, Lahm H, Spöttl G, Göke B, et al: Perifosine-mediated Akt inhibition in neuroendocrine tumor cells: role of specific Akt isoforms. Endocr Relat Cancer 2012;19:423-434.
100.
Auernhammer CJ, Göke B: Therapeutic strategies for advanced neuroendocrine carcinomas of jejunum/ileum and pancreatic origin. Gut 2011;60:1009-1021.
101.
Dilz L-M, Denecke T, Steffen IG, Prasad V, von Weikersthal LF, Pape U-F, et al: Streptozocin/5-fluorouracil chemotherapy is associated with durable response in patients with advanced pancreatic neuroendocrine tumours. Eur J Cancer 2015;51:1253-1262.
102.
Abdel-Rahman O, Fouad M: Temozolomide-based combination for advanced neuroendocrine neoplasms: a systematic review of the literature. Future Oncol 2015;11:1275-1290.
103.
Mitry E, Walter T, Baudin E, Kurtz J-E, Ruszniewski P, Dominguez-Tinajero S, et al: Bevacizumab plus capecitabine in patients with progressive advanced well-differentiated neuroendocrine tumors of the gastro-intestinal (GI-NETs) tract (BETTER trial) - a phase II non-randomised trial. Eur J Cancer 2014;50:3107-3115.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.