The central link between obesity and type 2 diabetes is the development of insulin resistance. To date, it is still not clear whether hyperinsulinemia causes insulin resistance, which underlies the pathogenesis of obesity-associated type 2 diabetes, owing to the sophisticated regulatory mechanisms that exist in the periphery and in the brain. In recent years, accumulating evidence has demonstrated the existence of insulin resistance within the hypothalamus. In this review, we have integrated the recent discoveries surrounding both central and peripheral insulin resistance to provide a comprehensive overview of insulin resistance in obesity and the regulation of systemic glucose homeostasis. In particular, this review will discuss how hyperinsulinemia and hyperleptinemia in obesity impair insulin sensitivity in tissues such as the liver, skeletal muscle, adipose tissue, and the brain. In addition, this review highlights insulin transport into the brain, signaling pathways associated with hypothalamic insulin receptor expression in the regulation of hepatic glucose production, and finally the perturbation of systemic glucose homeostasis as a consequence of central insulin resistance. We also suggest future approaches to overcome both central and peripheral insulin resistance to treat obesity and type 2 diabetes.

1.
Shaw JE, Sicree RA, Zimmet PZ: Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010;87:4-14.
2.
Zimmet P, Alberti KG, Shaw J: Global and societal implications of the diabetes epidemic. Nature 2001;414:782-787.
3.
Wild S, Roglic G, Green A, Sicree R, King H: Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047-1053.
4.
Facchini FS, Hua N, Abbasi F, Reaven GM: Insulin resistance as a predictor of age-related diseases. J Clin Endocrinol Metab 2001;86:3574-3578.
5.
DeFronzo RA, Abdul-Ghani M: Type 2 diabetes can be prevented with early pharmacological intervention. Diabetes Care 2011;34(suppl 2):S202-S209.
6.
De Meyts P: Cooperative properties of hormone receptors in cell membranes. J Supramol Struct 1976;4:241-258.
7.
de Meyts P, Roth J, Neville DM Jr, Gavin JR 3rd, Lesniak MA: Insulin interactions with its receptors: experimental evidence for negative cooperativity. Biochem Biophys Res Commun 1973;55:154-161.
8.
Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E, et al: The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell 1985;40:747-758.
9.
Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ, et al: Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 1985;313:756-761.
10.
Seino S, Bell GI: Alternative splicing of human insulin receptor messenger RNA. Biochem Biophys Res Commun 1989;159:312-316.
11.
Gavin JR 3rd, Roth J, Neville DM Jr, de Meyts P, Buell DN: Insulin-dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proc Natl Acad Sci USA 1974;71:84-88.
12.
Czech MP, Klarlund JK, Yagaloff KA, Bradford AP, Lewis RE: Insulin receptor signaling. Activation of multiple serine kinases. J Biol Chem 1988;263:11017-11020.
13.
Kahn CR, White MF: The insulin receptor and the molecular mechanism of insulin action. J Clin Invest 1988;82:1151-1156.
14.
Lawrence JC Jr, Fadden P, Haystead TA, Lin TA: PHAS proteins as mediators of the actions of insulin, growth factors and cAMP on protein synthesis and cell proliferation. Adv Enzyme Regul 1997;37:239-267.
15.
von Manteuffel SR, Dennis PB, Pullen N, Gingras AC, Sonenberg N, Thomas G: The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6k. Mol Cell Biol 1997;17:5426-5436.
16.
Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR: Bidirectional modulation of insulin action by amino acids. J Clin Invest 1998;101:1519-1529.
17.
Xu G, Marshall CA, Lin TA, Kwon G, Munivenkatappa RB, Hill JR, et al: Insulin mediates glucose-stimulated phosphorylation of PHAS-I by pancreatic beta cells. An insulin-receptor mechanism for autoregulation of protein synthesis by translation. J Biol Chem 1998;273:4485-4491.
18.
Shigemitsu K, Tsujishita Y, Hara K, Nanahoshi M, Avruch J, Yonezawa K: Regulation of translational effectors by amino acid and mammalian target of rapamycin signaling pathways. Possible involvement of autophagy in cultured hepatoma cells. J Biol Chem 1999;274:1058-1065.
19.
Gual P, Le Marchand-Brustel Y, Tanti JF: Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 2005;87:99-109.
20.
Slot JW, Geuze HJ, Gigengack S, James DE, Lienhard GE: Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc Natl Acad Sci USA 1991;88:7815-7819.
21.
Slot JW, Geuze HJ, Gigengack S, Lienhard GE, James DE: Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J Cell Biol 1991;113:123-135.
22.
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995;378:785-789.
23.
Summers SA, Kao AW, Kohn AD, Backus GS, Roth RA, Pessin JE, et al: The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism. J Biol Chem 1999;274:17934-17940.
24.
Zick Y, Grunberger G, Podskalny JM, Moncada V, Taylor SI, Gorden P, et al: Insulin stimulates phosphorylation of serine residues in soluble insulin receptors. Biochem Biophys Res Commun 1983;116:1129-1135.
25.
Kusari J, Kenner KA, Suh KI, Hill DE, Henry RR: Skeletal muscle protein tyrosine phosphatase activity and tyrosine phosphatase 1B protein content are associated with insulin action and resistance. J Clin Invest 1994;93:1156-1162.
26.
Krebs DL, Hilton DJ: A new role for SOCS in insulin action. Suppressor of cytokine signaling. Sci STKE 2003;2003:PE6.
27.
Zick Y: Insulin resistance: a phosphorylation-based uncoupling of insulin signaling. Trends Cell Biol 2001;11:437-441.
28.
Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, et al: A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem 1997;272:29911-29918.
29.
Rask-Madsen C, Buonomo E, Li Q, Park K, Clermont AC, Yerokun O, et al: Hyperinsulinemia does not change atherosclerosis development in apolipoprotein E null mice. Arterioscler Thromb Vasc Biol 2012;32:1124-1131.
30.
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM: Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425-432.
31.
Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG: Identification of targets of leptin action in rat hypothalamus. J Clin Invest 1996;98:1101-1106.
32.
Hom FG, Goodner CJ, Berrie MA: A [3H]2-deoxyglucose method for comparing rates of glucose metabolism and insulin responses among rat tissues in vivo. Validation of the model and the absence of an insulin effect on brain. Diabetes 1984;33:141-152.
33.
Seaquist ER, Damberg GS, Tkac I, Gruetter R: The effect of insulin on in vivo cerebral glucose concentrations and rates of glucose transport/metabolism in humans. Diabetes 2001;50:2203-2209.
34.
Garcia-Caceres C, Quarta C, Varela L, Gao Y, Gruber T, Legutko B, et al: Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 2016;166:867-880.
35.
Havrankova J, Brownstein M, Roth J: Insulin and insulin receptors in rodent brain. Diabetologia 1981;20(suppl):268-273.
36.
Havrankova J, Roth J, Brownstein M: Insulin receptors are widely distributed in the central nervous system of the rat. Nature 1978;272:827-829.
37.
Havrankova J, Roth J, Brownstein MJ: Insulin receptors in brain. Adv Metab Disord 1983;10:259-268.
38.
Marks JL, Porte D Jr, Stahl WL, Baskin DG: Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology 1990;127:3234-3236.
39.
Banks WA, Jaspan JB, Huang W, Kastin AJ: Transport of insulin across the blood-brain barrier: saturability at euglycemic doses of insulin. Peptides 1997;18:1423-1429.
40.
Margolis RU, Altszuler N: Insulin in the cerebrospinal fluid. Nature 1967;215:1375-1376.
41.
Woods SC, Seeley RJ, Baskin DG, Schwartz MW: Insulin and the blood-brain barrier. Curr Pharm Des 2003;9:795-800.
42.
Havrankova J, Schmechel D, Roth J, Brownstein M: Identification of insulin in rat brain. Proc Natl Acad Sci USA 1978;75:5737-5741.
43.
Devaskar SU, Giddings SJ, Rajakumar PA, Carnaghi LR, Menon RK, Zahm DS: Insulin gene expression and insulin synthesis in mammalian neuronal cells. J Biol Chem 1994;269:8445-8454.
44.
Mehran AE, Templeman NM, Brigidi GS, Lim GE, Chu KY, Hu X, et al: Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab 2012;16:723-737.
45.
Deltour L, Leduque P, Blume N, Madsen O, Dubois P, Jami J, et al: Differential expression of the two nonallelic proinsulin genes in the developing mouse embryo. Proc Natl Acad Sci USA 1993;90:527-531.
46.
Baskin DG, Figlewicz Lattemann D, Seeley RJ, Woods SC, Porte D Jr, Schwartz MW: Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Res 1999;848:114-123.
47.
Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG: Central nervous system control of food intake. Nature 2000;404:661-671.
48.
Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, et al: Role of brain insulin receptor in control of body weight and reproduction. Science 2000;289:2122-2125.
49.
King GL, Johnson SM: Receptor-mediated transport of insulin across endothelial cells. Science 1985;227:1583-1586.
50.
Hachiya HL, Halban PA, King GL: Intracellular pathways of insulin transport across vascular endothelial cells. Am J Physiol 1988;255(pt 1):C459-C464.
51.
Banks WA, Jaspan JB, Kastin AJ: Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassays. Peptides 1997;18:1257-1262.
52.
Davidson DA, Bohannon NJ, Corp ES, Lattemann DP, Woods SC, Porte D Jr, et al: Evidence for separate receptors for insulin and insulin-like growth factor-I in choroid plexus of rat brain by quantitative autoradiography. J Histochem Cytochem 1990;38:1289-1294.
53.
Baskin DG, Brewitt B, Davidson DA, Corp E, Paquette T, Figlewicz DP, et al: Quantitative autoradiographic evidence for insulin receptors in the choroid plexus of the rat brain. Diabetes 1986;35:246-249.
54.
Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, et al: Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab 2014;19:293-301.
55.
Wei LC, Shi M, Chen LW, Cao R, Zhang P, Chan YS: Nestin-containing cells express glial fibrillary acidic protein in the proliferative regions of central nervous system of postnatal developing and adult mice. Brain Res Dev Brain Res 2002;139:9-17.
56.
Baroncini M, Allet C, Leroy D, Beauvillain JC, Francke JP, Prevot V: Morphological evidence for direct interaction between gonadotrophin-releasing hormone neurones and astroglial cells in the human hypothalamus. J Neuroendocrinol 2007;19:691-702.
57.
Kaiyala KJ, Prigeon RL, Kahn SE, Woods SC, Schwartz MW: Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes 2000;49:1525-1533.
58.
Urayama A, Banks WA: Starvation and triglycerides reverse the obesity-induced impairment of insulin transport at the blood-brain barrier. Endocrinology 2008;149:3592-3597.
59.
Landau BR, Takaoka Y, Abrams MA, Genuth SM, van Houten M, Posner BI, et al: Binding of insulin by monkey and pig hypothalamus. Diabetes 1983;32:284-291.
60.
Hill JM, Lesniak MA, Pert CB, Roth J: Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience 1986;17:1127-1138.
61.
Werther GA, Hogg A, Oldfield BJ, McKinley MJ, Figdor R, Allen AM, et al: Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology 1987;121:1562-1570.
62.
Woods CA, Guttman ZR, Huang D, Kolaric RA, Rabinowitsch AI, Jones KT, et al: Insulin receptor activation in the nucleus accumbens reflects nutritive value of a recently ingested meal. Physiol Behav 2016;159:52-63.
63.
Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L: Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 2002;5:566-572.
64.
Benoit SC, Air EL, Coolen LM, Strauss R, Jackman A, Clegg DJ, et al: The catabolic action of insulin in the brain is mediated by melanocortins. J Neurosci 2002;22:9048-9052.
65.
Sipols AJ, Baskin DG, Schwartz MW: Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 1995;44:147-151.
66.
Schwartz MW, Sipols AJ, Marks JL, Sanacora G, White JD, Scheurink A, et al: Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology 1992;130:3608-3616.
67.
McGowan MK, Andrews KM, Fenner D, Grossman SP: Chronic intrahypothalamic insulin infusion in the rat: behavioral specificity. Physiol Behav 1993;54:1031-1034.
68.
Woods SC, Lotter EC, McKay LD, Porte D Jr: Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 1979;282:503-505.
69.
Hallschmid M, Schultes B, Marshall L, Molle M, Kern W, Bredthauer J, et al: Transcortical direct current potential shift reflects immediate signaling of systemic insulin to the human brain. Diabetes 2004;53:2202-2208.
70.
Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers MG Jr, et al: Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 2003;52:227-231.
71.
Koch L, Wunderlich FT, Seibler J, Konner AC, Hampel B, Irlenbusch S, et al: Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest 2008;118:2132-2147.
72.
Hill JW, Elias CF, Fukuda M, Williams KW, Berglund ED, Holland WL, et al: Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab 2010;11:286-297.
73.
Hill JW, Xu Y, Preitner F, Fukuda M, Cho YR, Luo J, et al: Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis. Endocrinology 2009;150:4874-4882.
74.
Konner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X, et al: Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab 2007;5:438-449.
75.
Steculorum SM, Ruud J, Karakasilioti I, Backes H, Engstrom Ruud L, Timper K, et al: AgRP neurons control systemic insulin sensitivity via myostatin expression in brown adipose tissue. Cell 2016;165:125-138.
76.
Obici S, Zhang BB, Karkanias G, Rossetti L: Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 2002;8:1376-1382.
77.
Spanswick D, Smith MA, Mirshamsi S, Routh VH, Ashford ML: Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nat Neurosci 2000;3:757-758.
78.
Pocai A, Lam TK, Gutierrez-Juarez R, Obici S, Schwartz GJ, Bryan J, et al: Hypothalamic K(ATP) channels control hepatic glucose production. Nature 2005;434:1026-1031.
79.
Inoue H, Ogawa W, Asakawa A, Okamoto Y, Nishizawa A, Matsumoto M, et al: Role of hepatic STAT3 in brain-insulin action on hepatic glucose production. Cell Metab 2006;3:267-275.
80.
Ramadoss P, Unger-Smith NE, Lam FS, Hollenberg AN: STAT3 targets the regulatory regions of gluconeogenic genes in vivo. Mol Endocrinol 2009;23:827-837.
81.
Kimura K, Tanida M, Nagata N, Inaba Y, Watanabe H, Nagashimada M, et al: Central insulin action activates Kupffer cells by suppressing hepatic vagal activation via the nicotinic alpha 7 acetylcholine receptor. Cell Rep 2016;14:2362-2374.
82.
Ramnanan CJ, Kraft G, Smith MS, Farmer B, Neal D, Williams PE, et al: Interaction between the central and peripheral effects of insulin in controlling hepatic glucose metabolism in the conscious dog. Diabetes 2013;62:74-84.
83.
Horwitz DL, Starr JI, Mako ME, Blackard WG, Rubenstein AH: Proinsulin, insulin, and C-peptide concentrations in human portal and peripheral blood. J Clin Invest 1975;55:1278-1283.
84.
Moore MC, Satake S, Baranowski B, Hsieh PS, Neal DW, Cherrington AD: Effect of hepatic denervation on peripheral insulin sensitivity in conscious dogs. Am J Physiol Endocrinol Metab 2002;282:E286-E296.
85.
Ramnanan CJ, Edgerton DS, Cherrington AD: Evidence against a physiologic role for acute changes in CNS insulin action in the rapid regulation of hepatic glucose production. Cell Metab 2012;15:656-664.
86.
Edgerton DS, Lautz M, Scott M, Everett CA, Stettler KM, Neal DW, et al: Insulin's direct effects on the liver dominate the control of hepatic glucose production. J Clin Invest 2006;116:521-527.
87.
Ramnanan CJ, Saraswathi V, Smith MS, Donahue EP, Farmer B, Farmer TD, et al: Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs. J Clin Invest 2011;121:3713-3723.
88.
Hendrick GK, Frizzell RT, Williams PE, Cherrington AD: Effect of hyperglucagonemia on hepatic glycogenolysis and gluconeogenesis after a prolonged fast. Am J Physiol 1990;258(pt 1):E841-E849.
89.
Nuttall FQ, Ngo A, Gannon MC: Regulation of hepatic glucose production and the role of gluconeogenesis in humans: is the rate of gluconeogenesis constant? Diabetes Metab Res Rev 2008;24:438-458.
90.
Yi CX, la Fleur SE, Fliers E, Kalsbeek A: The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim Biophys Acta 2010;1802:416-431.
91.
Carvalheira JB, Ribeiro EB, Araujo EP, Guimaraes RB, Telles MM, Torsoni M, et al: Selective impairment of insulin signalling in the hypothalamus of obese Zucker rats. Diabetologia 2003;46:1629-1640.
92.
Balland E, Cowley MA: New insights in leptin resistance mechanisms in mice. Front Neuroendocrinol 2015;39:59-65.
93.
Kern W, Born J, Schreiber H, Fehm HL: Central nervous system effects of intranasally administered insulin during euglycemia in men. Diabetes 1999;48:557-563.
94.
Ikeda H, West DB, Pustek JJ, Figlewicz DP, Greenwood MR, Porte D Jr, et al: Intraventricular insulin reduces food intake and body weight of lean but not obese Zucker rats. Appetite 1986;7:381-386.
95.
Hallschmid M, Benedict C, Schultes B, Born J, Kern W: Obese men respond to cognitive but not to catabolic brain insulin signaling. Int J Obes (Lond) 2008;32:275-282.
96.
Heni M, Wagner R, Kullmann S, Veit R, Mat Husin H, Linder K, et al: Central insulin administration improves whole-body insulin sensitivity via hypothalamus and parasympathetic outputs in men. Diabetes 2014;63:4083-4088.
97.
Heni M, Kullmann S, Preissl H, Fritsche A, Haring HU: Impaired insulin action in the human brain: causes and metabolic consequences. Nat Rev Endocrinol 2015;11:701-711.
98.
Gancheva S, Koliaki C, Bierwagen A, Nowotny P, Heni M, Fritsche A, et al: Effects of intranasal insulin on hepatic fat accumulation and energy metabolism in humans. Diabetes 2015;64:1966-1975.
99.
Dash S, Xiao C, Morgantini C, Koulajian K, Lewis GF: Intranasal insulin suppresses endogenous glucose production in humans compared with placebo in the presence of similar venous insulin concentrations. Diabetes 2015;64:766-774.
100.
Benedict C, Brede S, Schioth HB, Lehnert H, Schultes B, Born J, et al: Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men. Diabetes 2011;60:114-118.
101.
Savage DB, Petersen KF, Shulman GI: Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 2007;87:507-520.
102.
Boden G: Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997;46:3-10.
103.
Kelley DE, Mokan M, Simoneau JA, Mandarino LJ: Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest 1993;92:91-98.
104.
Boden G: Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin resistance and type 2 diabetes. Exp Clin Endocrinol Diabetes 2003;111:121-124.
105.
Guilherme A, Virbasius JV, Puri V, Czech MP: Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008;9:367-377.
106.
Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, et al: Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 2003;422:173-176.
107.
Stein DT, Esser V, Stevenson BE, Lane KE, Whiteside JH, Daniels MB, et al: Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J Clin Invest 1996;97:2728-2735.
108.
Roduit R, Nolan C, Alarcon C, Moore P, Barbeau A, Delghingaro-Augusto V, et al: A role for the malonyl-CoA/long-chain acyl-CoA pathway of lipid signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli. Diabetes 2004;53:1007-1019.
109.
Crespin SR, Greenough WB 3rd, Steinberg D: Stimulation of insulin secretion by infusion of free fatty acids. J Clin Invest 1969;48:1934-1943.
110.
Poitout V, Hagman D, Stein R, Artner I, Robertson RP, Harmon JS: Regulation of the insulin gene by glucose and fatty acids. J Nutr 2006;136:873-876.
111.
Bollheimer LC, Skelly RH, Chester MW, McGarry JD, Rhodes CJ: Chronic exposure to free fatty acid reduces pancreatic beta cell insulin content by increasing basal insulin secretion that is not compensated for by a corresponding increase in proinsulin biosynthesis translation. J Clin Invest 1998;101:1094-1101.
112.
El-Assaad W, Buteau J, Peyot ML, Nolan C, Roduit R, Hardy S, et al: Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology 2003;144:4154-4163.
113.
Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P: Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 1995;269:546-549.
114.
Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, et al: Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995;269:543-546.
115.
Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, et al: Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995;269:540-543.
116.
Kamohara S, Burcelin R, Halaas JL, Friedman JM, Charron MJ: Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 1997;389:374-377.
117.
Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C, et al: Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 1999;23:775-786.
118.
Ahren B, Larsson H, Wilhelmsson C, Nasman B, Olsson T: Regulation of circulating leptin in humans. Endocrine 1997;7:1-8.
119.
Havel PJ, Kasim-Karakas S, Mueller W, Johnson PR, Gingerich RL, Stern JS: Relationship of plasma leptin to plasma insulin and adiposity in normal weight and overweight women: effects of dietary fat content and sustained weight loss. J Clin Endocrinol Metab 1996;81:4406-4413.
120.
Segal KR, Landt M, Klein S: Relationship between insulin sensitivity and plasma leptin concentration in lean and obese men. Diabetes 1996;45:988-991.
121.
Mantzoros CS, Liolios AD, Tritos NA, Kaklamani VG, Doulgerakis DE, Griveas I, et al: Circulating insulin concentrations, smoking, and alcohol intake are important independent predictors of leptin in young healthy men. Obes Res 1998;6:179-186.
122.
Corkey BE: Banting lecture 2011: hyperinsulinemia: cause or consequence? Diabetes 2012;61:4-13.
123.
Ye J: Role of insulin in the pathogenesis of free fatty acid-induced insulin resistance in skeletal muscle. Endocr Metab Immune Disord Drug Targets 2007;7:65-74.
124.
Zhao AZ, Bornfeldt KE, Beavo JA: Leptin inhibits insulin secretion by activation of phosphodiesterase 3B. J Clin Invest 1998;102:869-873.
125.
Wang JL, Chinookoswong N, Scully S, Qi M, Shi ZQ: Differential effects of leptin in regulation of tissue glucose utilization in vivo. Endocrinology 1999;140:2117-2124.
126.
Rossetti L, Massillon D, Barzilai N, Vuguin P, Chen W, Hawkins M, et al: Short term effects of leptin on hepatic gluconeogenesis and in vivo insulin action. J Biol Chem 1997;272:27758-27763.
127.
Gray SL, Donald C, Jetha A, Covey SD, Kieffer TJ: Hyperinsulinemia precedes insulin resistance in mice lacking pancreatic beta-cell leptin signaling. Endocrinology 2010;151:4178-4186.
128.
Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, et al: Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996;84:491-495.
129.
Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, et al: Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999;341:879-884.
130.
Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, et al: Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 2002;110:1093-1103.
131.
Boden G, Chen X, Kolaczynski JW, Polansky M: Effects of prolonged hyperinsulinemia on serum leptin in normal human subjects. J Clin Invest 1997;100:1107-1113.
132.
Koopmans SJ, Frolich M, Gribnau EH, Westendorp RG, DeFronzo RA: Effect of hyperinsulinemia on plasma leptin concentrations and food intake in rats. Am J Physiol 1998;274(pt 1):E998-E1001.
133.
Sonnenberg GE, Krakower GR, Hoffmann RG, Maas DL, Hennes MM, Kissebah AH: Plasma leptin concentrations during extended fasting and graded glucose infusions: relationships with changes in glucose, insulin, and FFA. J Clin Endocrinol Metab 2001;86:4895-4900.
134.
D'Adamo M, Buongiorno A, Maroccia E, Leonetti F, Barbetti F, Giaccari A, et al: Increased OB gene expression leads to elevated plasma leptin concentrations in patients with chronic primary hyperinsulinemia. Diabetes 1998;47:1625-1629.
135.
Fujikawa T, Chuang JC, Sakata I, Ramadori G, Coppari R: Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice. Proc Natl Acad Sci USA 2010;107:17391-17396.
136.
Wang MY, Chen L, Clark GO, Lee Y, Stevens RD, Ilkayeva OR, et al: Leptin therapy in insulin-deficient type I diabetes. Proc Natl Acad Sci USA 2010;107:4813-4819.
137.
Denroche HC, Levi J, Wideman RD, Sequeira RM, Huynh FK, Covey SD, et al: Leptin therapy reverses hyperglycemia in mice with streptozotocin-induced diabetes, independent of hepatic leptin signaling. Diabetes 2011;60:1414-1423.
138.
Licinio J, Caglayan S, Ozata M, Yildiz BO, de Miranda PB, O'Kirwan F, et al: Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci USA 2004;101:4531-4536.
139.
Oral EA, Simha V, Ruiz E, Andewelt A, Premkumar A, Snell P, et al: Leptin-replacement therapy for lipodystrophy. N Engl J Med 2002;346:570-578.
140.
DeFronzo RA, Bonadonna RC, Ferrannini E: Pathogenesis of NIDDM. A balanced overview. Diabetes Care 1992;15:318-368.
141.
Leahy JL, Cooper HE, Deal DA, Weir GC: Chronic hyperglycemia is associated with impaired glucose influence on insulin secretion. A study in normal rats using chronic in vivo glucose infusions. J Clin Invest 1986;77:908-915.
142.
Bonner-Weir S, Trent DF, Weir GC: Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest 1983;71:1544-1553.
143.
Donath MY, Gross DJ, Cerasi E, Kaiser N: Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes 1999;48:738-744.
144.
Weir GC, Bonner-Weir S: Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 2004;53(suppl 3):S16-S21.
145.
Rossetti L, Shulman GI, Zawalich W, DeFronzo RA: Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J Clin Invest 1987;80:1037-1044.
146.
Yki-Jarvinen H, Helve E, Koivisto VA: Hyperglycemia decreases glucose uptake in type I diabetes. Diabetes 1987;36:892-896.
147.
Valera Mora ME, Scarfone A, Calvani M, Greco AV, Mingrone G: Insulin clearance in obesity. J Am Coll Nutr 2003;22:487-493.
148.
Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, et al: Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 2000;6:87-97.
149.
Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, et al: Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 2003;100:4162-4167.
150.
Farris W, Mansourian S, Leissring MA, Eckman EA, Bertram L, Eckman CB, et al: Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein. Am J Pathol 2004;164:1425-1434.
151.
Kobayashi M, Olefsky JM: Effect of experimental hyperinsulinemia on insulin binding and glucose transport in isolated rat adipocytes. Am J Physiol 1978;235:E53-E62.
152.
Martin C, Desai KS, Steiner G: Receptor and postreceptor insulin resistance induced by in vivo hyperinsulinemia. Can J Physiol Pharmacol 1983;61:802-807.
153.
Rizza RA, Mandarino LJ, Genest J, Baker BA, Gerich JE: Production of insulin resistance by hyperinsulinaemia in man. Diabetologia 1985;28:70-75.
154.
Pickup JC, Mattock MB, Chusney GD, Burt D: NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 1997;40:1286-1292.
155.
Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M, et al: Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003;52:812-817.
156.
Herder C, Brunner EJ, Rathmann W, Strassburger K, Tabak AG, Schloot NC, et al: Elevated levels of the anti-inflammatory interleukin-1 receptor antagonist precede the onset of type 2 diabetes: the Whitehall II study. Diabetes Care 2009;32:421-423.
157.
Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM: C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001;286:327-334.
158.
Fishel MA, Watson GS, Montine TJ, Wang Q, Green PS, Kulstad JJ, et al: Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Arch Neurol 2005;62:1539-1544.
159.
Heilbronn LK, Campbell LV: Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr Pharm Des 2008;14:1225-1230.
160.
Lumeng CN, Saltiel AR: Inflammatory links between obesity and metabolic disease. J Clin Invest 2011;121:2111-2117.
161.
Osborn O, Olefsky JM: The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 2012;18:363-374.
162.
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr: Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112:1796-1808.
163.
Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM: Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995;95:2409-2415.
164.
Hotamisligil GS, Shargill NS, Spiegelman BM: Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993;259:87-91.
165.
Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS: Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997;389:610-614.
166.
Brestoff JR, Artis D: Immune regulation of metabolic homeostasis in health and disease. Cell 2015;161:146-160.
167.
Cipolletta D: Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology 2014;142:517-525.
168.
McNelis JC, Olefsky JM: Macrophages, immunity, and metabolic disease. Immunity 2014;41:36-48.
169.
Sell H, Habich C, Eckel J: Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol 2012;8:709-716.
170.
Mathis D: Immunological goings-on in visceral adipose tissue. Cell Metab 2013;17:851-859.
171.
Lackey DE, Olefsky JM: Regulation of metabolism by the innate immune system. Nat Rev Endocrinol 2016;12:15-28.
172.
Donath MY: Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov 2014;13:465-476.
173.
Utzschneider KM, Kahn SE: Review: the role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 2006;91:4753-4761.
174.
Bellentani S, Saccoccio G, Masutti F, Croce LS, Brandi G, Sasso F, et al: Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann Intern Med 2000;132:112-117.
175.
Schwarz JM, Linfoot P, Dare D, Aghajanian K: Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am J Clin Nutr 2003;77:43-50.
176.
Brown MS, Goldstein JL: Selective versus total insulin resistance: a pathogenic paradox. Cell Metab 2008;7:95-96.
177.
Brown MS, Goldstein JL: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997;89:331-340.
178.
Horton JD, Goldstein JL, Brown MS: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002;109:1125-1131.
179.
Bugianesi E, Gastaldelli A, Vanni E, Gambino R, Cassader M, Baldi S, et al: Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia 2005;48:634-642.
180.
Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, et al: Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 2004;279:32345-32353.
181.
Qu X, Seale JP, Donnelly R: Tissue and isoform-selective activation of protein kinase C in insulin-resistant obese Zucker rats - effects of feeding. J Endocrinol 1999;162:207-214.
182.
Samuel VT, Liu ZX, Wang A, Beddow SA, Geisler JG, Kahn M, et al: Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 2007;117:739-745.
183.
Raddatz K, Turner N, Frangioudakis G, Liao BM, Pedersen DJ, Cantley J, et al: Time-dependent effects of Prkce deletion on glucose homeostasis and hepatic lipid metabolism on dietary lipid oversupply in mice. Diabetologia 2011;54:1447-1456.
184.
Kumashiro N, Erion DM, Zhang D, Kahn M, Beddow SA, Chu X, et al: Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci USA 2011;108:16381-16385.
185.
Magkos F, Su X, Bradley D, Fabbrini E, Conte C, Eagon JC, et al: Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology 2012;142:1444-1446e2.
186.
Hotamisligil GS: Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010;140:900-917.
187.
Yang L, Calay ES, Fan J, Arduini A, Kunz RC, Gygi SP, et al: S-Nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction. Science 2015;349:500-506.
188.
Haeusler RA, Hartil K, Vaitheesvaran B, Arrieta-Cruz I, Knight CM, Cook JR, et al: Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nat Commun 2014;5:5190.
189.
Lu M, Wan M, Leavens KF, Chu Q, Monks BR, Fernandez S, et al: Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat Med 2012;18:388-395.
190.
Dong XC, Copps KD, Guo S, Li Y, Kollipara R, DePinho RA, et al: Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab 2008;8:65-76.
191.
Titchenell PM, Chu Q, Monks BR, Birnbaum MJ: Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo. Nat Commun 2015;6:7078.
192.
Titchenell PM, Quinn WJ, Lu M, Chu Q, Lu W, Li C, et al: Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metab 2016;23:1154-1166.
193.
Duca FA, Bauer PV, Hamr SC, Lam TK: Glucoregulatory relevance of small intestinal nutrient sensing in physiology, bariatric surgery, and pharmacology. Cell Metab 2015;22:367-380.
194.
DeFronzo RA, Tripathy D: Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009;32(suppl 2):S157-S163.
195.
Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG: Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 1990;322:223-228.
196.
Hales CN, Walker JB, Garland PB, Randle PJ: Fasting plasma concentrations of insulin, non-esterified fatty acids, glycerol, and glucose in the early detection of diabetes mellitus. Lancet 1965;1:65-67.
197.
Shulman GI: Cellular mechanisms of insulin resistance. J Clin Invest 2000;106:171-176.
198.
Cline GW, Petersen KF, Krssak M, Shen J, Hundal RS, Trajanoski Z, et al: Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 1999;341:240-246.
199.
Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, et al: Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 1996;97:2859-2865.
200.
Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, et al: Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 2002;277:50230-50236.
201.
Itani SI, Ruderman NB, Schmieder F, Boden G: Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 2002;51:2005-2011.
202.
Szendroedi J, Yoshimura T, Phielix E, Koliaki C, Marcucci M, Zhang D, et al: Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci USA 2014;111:9597-9602.
203.
Kim JK, Michael MD, Previs SF, Peroni OD, Mauvais-Jarvis F, Neschen S, et al: Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle. J Clin Invest 2000;105:1791-1797.
204.
Kim JK, Zisman A, Fillmore JJ, Peroni OD, Kotani K, Perret P, et al: Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. J Clin Invest 2001;108:153-160.
205.
Gregoire FM, Smas CM, Sul HS: Understanding adipocyte differentiation. Physiol Rev 1998;78:783-809.
206.
Virtanen KA, Lonnroth P, Parkkola R, Peltoniemi P, Asola M, Viljanen T, et al: Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab 2002;87:3902-3910.
207.
Ng JM, Azuma K, Kelley C, Pencek R, Radikova Z, Laymon C, et al: PET imaging reveals distinctive roles for different regional adipose tissue depots in systemic glucose metabolism in nonobese humans. Am J Physiol Endocrinol Metab 2012;303:E1134-E1141.
208.
Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, et al: Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 2001;409:729-733.
209.
Vazirani RP, Verma A, Sadacca LA, Buckman MS, Picatoste B, Beg M, et al: Disruption of adipose Rab10-dependent insulin signaling causes hepatic insulin resistance. Diabetes 2016;65:1577-1589.
210.
Kissebah AH, Krakower GR: Regional adiposity and morbidity. Physiol Rev 1994;74:761-811.
211.
Kahn BB, Flier JS: Obesity and insulin resistance. J Clin Invest 2000;106:473-481.
212.
Boden G, Chen X: Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. J Clin Invest 1995;96:1261-1268.
213.
Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, et al: Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 1999;103:253-259.
214.
Kahn SE, Hull RL, Utzschneider KM: Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006;444:840-846.
215.
Herman MA, Peroni OD, Villoria J, Schon MR, Abumrad NA, Bluher M, et al: A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 2012;484:333-338.
216.
Stefan N, Kantartzis K, Celebi N, Staiger H, Machann J, Schick F, et al: Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans. Diabetes Care 2010;33:405-407.
217.
Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS: Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 2008;134:933-944.
218.
Su X, Magkos F, Zhou D, Eagon JC, Fabbrini E, Okunade AL, et al: Adipose tissue monomethyl branched-chain fatty acids and insulin sensitivity: effects of obesity and weight loss. Obesity (Silver Spring) 2015;23:329-334.
219.
Yore MM, Syed I, Moraes-Vieira PM, Zhang T, Herman MA, Homan EA, et al: Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 2014;159:318-332.
220.
Romere C, Duerrschmid C, Bournat J, Constable P, Jain M, Xia F, et al: Asprosin, a fasting-induced glucogenic protein hormone. Cell 2016;165:566-579.
221.
Amrani A, Jafarian-Tehrani M, Mormede P, Durant S, Pleau JM, Haour F, et al: Interleukin-1 effect on glycemia in the non-obese diabetic mouse at the pre-diabetic stage. J Endocrinol 1996;148:139-148.
222.
Rotter V, Nagaev I, Smith U: Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem 2003;278:45777-45784.
223.
Laurencikiene J, van Harmelen V, Arvidsson Nordstrom E, Dicker A, Blomqvist L, Naslund E, et al: NF-kappaB is important for TNF-alpha-induced lipolysis in human adipocytes. J Lipid Res 2007;48:1069-1077.
224.
Bezaire V, Mairal A, Anesia R, Lefort C, Langin D: Chronic TNFalpha and cAMP pre-treatment of human adipocytes alter HSL, ATGL and perilipin to regulate basal and stimulated lipolysis. FEBS Lett 2009;583:3045-3049.
225.
Ranjit S, Boutet E, Gandhi P, Prot M, Tamori Y, Chawla A, et al: Regulation of fat specific protein 27 by isoproterenol and TNF-alpha to control lipolysis in murine adipocytes. J Lipid Res 2011;52:221-236.
226.
Perry RJ, Camporez JP, Kursawe R, Titchenell PM, Zhang D, Perry CJ, et al: Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 2015;160:745-758.
227.
Perry RJ, Zhang XM, Zhang D, Kumashiro N, Camporez JP, Cline GW, et al: Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Med 2014;20:759-763.
228.
Perry RJ, Lee S, Ma L, Zhang D, Schlessinger J, Shulman GI: FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Commun 2015;6:6980.
229.
Febbraio MA: gp130 receptor ligands as potential therapeutic targets for obesity. J Clin Invest 2007;117:841-849.
230.
Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI: Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 1998;394:897-901.
231.
Grunfeld C, Zhao C, Fuller J, Pollack A, Moser A, Friedman J, et al: Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J Clin Invest 1996;97:2152-2157.
232.
Gustafson B, Hedjazifar S, Gogg S, Hammarstedt A, Smith U: Insulin resistance and impaired adipogenesis. Trends Endocrinol Metab 2015;26:193-200.
233.
Rutkowski JM, Stern JH, Scherer PE: The cell biology of fat expansion. J Cell Biol 2015;208:501-512.
234.
Gustafson B, Gogg S, Hedjazifar S, Jenndahl L, Hammarstedt A, Smith U: Inflammation and impaired adipogenesis in hypertrophic obesity in man. Am J Physiol Endocrinol Metab 2009;297:E999-E1003.
235.
Arner E, Westermark PO, Spalding KL, Britton T, Ryden M, Frisen J, et al: Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 2010;59:105-109.
236.
Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE: Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 2000;43:1498-1506.
237.
Neeland IJ, Turer AT, Ayers CR, Powell-Wiley TM, Vega GL, Farzaneh-Far R, et al: Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA 2012;308:1150-1159.
238.
Despres JP, Lemieux I: Abdominal obesity and metabolic syndrome. Nature 2006;444:881-887.
239.
Kloting N, Fasshauer M, Dietrich A, Kovacs P, Schon MR, Kern M, et al: Insulin-sensitive obesity. Am J Physiol Endocrinol Metab 2010;299:E506-E515.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.