A combined neuroendocrine, metabolic, and chronobiological view can help to better understand the multiple and complex mechanisms involved in obesity development and maintenance, as well as to provide new effective approaches for its control and treatment. Indeed, we have currently updated data on the whole adipogenic process involved in white adipose tissue (WAT) mass expansion, namely due to a mechanism whereby WAT cells become hypertrophic, thus inducing a serious local (WAT) inflammatory condition that in turn, will impair not only the cross-talk between the hypothalamus and the WAT, but also favoring the development of deep and widespread neuroendocrine-metabolic dysfunction. Moreover, we also have revisited the circadian clock genes involved in dysfunctional WAT mass expansion and the mechanisms that may lead to obesity development, including early metabolic dysfunctions, enhanced oxidative stress and distorted energy homeostasis. The epigenetic changes of clock genes driving metabolic disease and obesity development have also been included in this review. Finally, we have also underlined the relevance of metabolic homeostasis regulation by central and peripheral organ clocks, sleep disturbances, nutrients, and feeding time, as key factors in obesity development as well as both, classical and chronotherapeutic approaches for its prevention and treatment.

1.
World Health Organization: Obesity and Overweight. Fact Sheet No 311, January 2015. Geneva, World Health Organization, 2015. http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed Nov 1, 2015).
2.
Arena R, Guazzi M, Lianov L, Whitsel L, Berra K, Lavie CJ, Kaminsky L, Williams M, Hivert MF, Cherie Franklin N, Myers J, Dengel D, Lloyd-Jones DM, Pinto FJ, Cosentino F, Halle M, Gielen S, Dendale P, Niebauer J, Pelliccia A, Giannuzzi P, Corra U, Piepoli MF, Guthrie G, Shurney D; AHA Writing Group, Arena R, Berra K, Dengel D, Franklin NC, Hivert MF, Kaminsky L, Lavie CJ, Lloyd-Jones DM, Myers J, Whitsel L, Williams M; ESC/EACPR Writing Group, Corra U, Cosentino F, Dendale P, Giannuzzi P, Gielen S, Guazzi M, Halle M, Niebauer J, Pelliccia A, Piepoli MF, Pinto FJ; ACPM Writing Group, Guthrie G, Lianov L, Shurney D: Healthy lifestyle interventions to combat noncommunicable disease - a novel nonhierarchical connectivity model for key stakeholders: a policy statement from the American Heart Association, European Society of Cardiology, European Association for Cardiovascular Prevention and Rehabilitation, and American College of Preventive Medicine. Eur Heart J 2015;36:2097-2109.
3.
Bosello O, Donataccio MP, Cuzzolaro M: Obesity or obesities? Controversies on the association between body mass index and premature mortality. Eat Weight Disord 2016;21:165-174.
4.
Sun K, Kusminski CM, Scherer PE: Adipose tissue remodeling and obesity. J Clin Invest 2011;121:2094-2101.
5.
Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS: Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 1999;20:68-100.
6.
Dibner C, Schibler U, Albrecht U: The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 2010;72:517-549.
7.
Ronti T, Lupattelli G, Mannarino E: The endocrine function of adipose tissue: an update. Clin Endocrinol (Oxf) 2006;64:355-365.
8.
Kras KM, Hausman DB, Hausman GJ, Martin RJ: Adipocyte development is dependent upon stem cell recruitment and proliferation of preadipocytes. Obes Res 1999;7:447-491.
9.
Gimble JM, Katz AJ, Bunnell BA: Adipose-derived stem cells for regenerative medicine. Circ Res 2007;100:1249-1260.
10.
Bianco P, Robey PG, Simmons PJ: Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2008;2:313-319.
11.
Caplan AI, Correa D: The MSC: an injury drugstore. Cell Stem Cell 2011;9:11-15.
12.
Kolonin MG, Simmons PJ: Combinatorial stem cell mobilization. Nat Biotechnol 2009;27:252-253.
13.
Daquinag AC, Zhang Y, Kolonin MG: Vascular targeting of adipose tissue as an anti-obesity approach. Trends Pharmacol Sci 2011;32:300-307.
14.
Traktuev D, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL: A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 2008;102:77-85.
15.
Rodeheffer MS, Birsoy K, Friedman JM: Identification of white adipocyte progenitor cells in vivo. Cell 2008;135:240-249.
16.
Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, et al: White fat progenitor cells reside in the adipose vasculature. Science 2008;322:583-586.
17.
Planat-Benard V, Silvestre JS, Cousin B, André M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Pénicaud L, Casteilla L: Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 2004;109:656-663.
18.
Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM: Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 2006;24:376-385.
19.
Giovambattista A, Gaillard RC, Spinedi E: Ghrelin gene-related peptides modulate rat white adiposity. Vitam Horm 2008;77:171-205.
20.
Castrogiovanni D, Gaillard RC, Giovambattista A, Spinedi E: Neuroendocrine, metabolic, and immune functions during the acute phase response of inflammatory stress in monosodium L-glutamate-damaged, hyperadipose male rat. Neuroendocrinology 2008;88:227-234.
21.
Zubiría MG, Vidal-Bravo J, Spinedi E, Giovambattista A: Relationship between impaired adipogenesis of retroperitoneal adipose tissue and hypertrophic obesity: role of endogenous glucocorticoid excess. J Cell Mol Med 2014;18:1549-1561.
22.
Alzamendi A, Giovambattista A, Raschia A, Madrid V, Gaillard RC, Rebolledo O, Gagliardino JJ, Spinedi E: Fructose-rich diet-induced abdominal adipose tissue endocrine dysfunction in normal male rats. Endocrine 2009;35:227-232.
23.
Campos CF, Duarte MS, Guimarães SE, Verardo LL, Wei S, Du M, Jiang Z, Bergen WG, Hausman GJ, Fernyhough-Culver M, Albrecht E, Dodson MV: Review: animal model and the current understanding of molecule dynamics of adipogenesis. Animal 2016;8:1-6.
24.
Walder K, Filippis A, Clark S, Zimmet P, Collier GR: Leptin inhibits insulin binding in isolated rat adipocytes. J Endocrinol 1997;155:R5-R7.
25.
Morioka T, Asilmaz E, Hu J, Dishinger JF, Kurpad AJ, Elias CF, Li H, Elmquist JK, Kennedy RT, Kulkarni RN: Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. J Clin Invest 2007;117:2860-2868.
26.
Covey SD, Wideman RD, McDonald C, Unniappan S, Huynh F, Asadi A, Speck M, Webber T, Chua SC, Kieffer TJ: The pancreatic beta cell is a key site for mediating the effects of leptin on glucose homeostasis. Cell Metab 2006;4:291-302.
27.
Navarra P, Tsagarakis S, Faria MS, Rees LH, Besser GM, Grossman AB: Interleukins-1 and -6 stimulate the release of corticotropin-releasing hormone-41 from rat hypothalamus in vitro via the eicosanoid cyclooxygenase pathway. Endocrinology 1991;128:37-44.
28.
Spinedi E, Hadid R, Daneva T, Gaillard RC: Cytokines stimulate the CRH but not the vasopressin neuronal system: evidence for a median eminence site of interleukin-6 action. Neuroendocrinology 1992;56:46-53.
29.
Cherradi N, Capponi AM, Gaillard RC, Pralong FP: Decreased expression of steroidogenic acute regulatory protein: a novel mechanism participating in the leptin-induced inhibition of glucocorticoid biosynthesis. Endocrinology 2001;142:3302-3308.
30.
Yokosuka M, Xu B, Pu S, Kalra PS, Kalra SP: Neural substrates for leptin and neuropeptide Y (NPY) interaction: hypothalamic sites associated with inhibition of NPY-induced food intake. Physiol Behav 1998;64:331-338.
31.
Zubiría MG, Fariña JP, Moreno G, Gagliardino JJ, Spinedi E, Giovambattista A: Excess fructose intake-induced hypertrophic visceral adipose tissue results from unbalanced precursor cell adipogenic signals. FEBS J 2013;280:5864-5874.
32.
Alzamendi A, Giovambattista A, García ME, Rebolledo OR, Gagliardino JJ, Spinedi E: Effect of pioglitazone on the fructose-induced abdominal adipose tissue dysfunction. PPAR Res 2012;2012:259093.
33.
Zubiría MG, Alzamendi A, Moreno G, Rey MA, Spinedi E, Giovambattista A: Long-term fructose intake increases adipogenic potential: evidence of direct effects of fructose on adipocyte precursor cells. Nutrients 2016;8: E198.
34.
Cristancho AG; Lazar MA: Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 2011;12:722-734.
35.
Sengenès C, Lolmède K, Zakaroff-Girard A, Busse R, Bouloumié A: Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. J Cell Physiol 2005;205:114-122.
36.
Gupta RK, Arany Z, Seale P, Mepani RJ, Ye L, Conroe HM, Roby YA, Kulaga H, Reed RR, Spiegelman BM: Transcriptional control of preadipocyte determination by Zfp423. Nature 2010;464:619-623.
37.
Tontonoz P, Spiegelman BM: Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 2008;77:289-312.
38.
Alzamendi A, Zubiría G, Moreno G, Portales A, Spinedi E, Giovambattista A: High risk of metabolic and adipose tissue dysfunctions in adult male progeny, due to prenatal and adulthood malnutrition induced by fructose rich diet. Nutrients 2016;8:E178.
39.
Mishra A, Cheng CH, Lee WC, Tsai LL: Proteomic changes in the hypothalamus and retroperitoneal fat from male F344 rats subjected to repeated light-dark shifts. Proteomics 2009;9:4017-4028.
40.
Daquinag AC, Tseng C, Salameh A, Zhang Y, Amaya-Manzanares F, Dadbin A, Florez F, Xu Y, Tong Q, Kolonin MG: Depletion of white adipocyte progenitors induces beige adipocyte differentiation and suppresses obesity development. Cell Death Differ 2015;22:351-363.
41.
Dibner C, Schibler U, Albrecht U: The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 2010;72:517-549.
42.
Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J: Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010;466:627-631.
43.
Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J: Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005;308:1043-1045.
44.
Oishi K, Atsumi G, Sugiyama S, Kodomari I, Kasamatsu M, Machida K, Ishida N: Disrupted fat absorption attenuates obesity induced by a high-fat diet in Clock mutant mice. FEBS Lett 2006;580:127-130.
45.
Costa MJ, So AY, Kaasik K, Krueger KC, Pillsbury ML, Fu YH, Ptacek LJ, Yamamoto KR, Feldman BJ: Circadian rhythm gene period 3 is an inhibitor of the adipocyte cell fate. J Biol Chem 2011;286:9063-9070.
46.
Dallmann R, Weaver DR: Altered body mass regulation in male mPeriod mutant mice on high-fat diet. Chronobiol Int 2010;27:1317-1328.
47.
Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, FitzGerald GA: BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2004;2:e377.
48.
Yang S, Liu A, Weidenhammer A, Cooksey RC, McClain D, Kim MK, Aguilera G, Abel ED, Chung JH: The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology 2009;150:2153-2160.
49.
Grimaldi B, Bellet MM, Katada S, Astarita G, Hirayama J, Amin RH, Granneman JG, Piomelli D, Leff T, Sassone-Corsi P: PER2 controls lipid metabolism by direct regulation of PPARgamma. Cell Metab 2010;12:509-520.
50.
Shi SQ, Ansari TS, McGuinness OP, Wasserman DH, Johnson CH: Circadian disruption leads to insulin resistance and obesity. Curr Biol 2013;23:372-381.
51.
Maury E, Ramsey KM, Bass J: Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circ Res 2010;106:447-462.
52.
Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, Mangelsdorf DJ, Evans RM: Nuclear receptor expression links the circadian clock to metabolism. Cell 2006;126:801-810.
53.
Buijs RM, Scheer FA, Kreier F, Yi C, Bos N, Goncharuk VD, Kalsbeek A: Organization of circadian functions: interaction with the body. Prog Brain Res 2006;153:341-360.
54.
Coomans CP, van den Berg SA, Lucassen EA, Houben T, Pronk AC, van der Spek RD, Kalsbeek A, Biermasz NR, Willems van DK, Romijn JA, Meijer JH: The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes 2013;62:1102-1108.
55.
la Fleur SE, Kalsbeek A, Wortel J, van der Vliet J, Buijs RM: Role for the pineal and melatonin in glucose homeostasis: pinealectomy increases night-time glucose concentrations. J Neuroendocrinol 2001;13:1025-1032.
56.
la Fleur SE, Kalsbeek A, Wortel J, Fekkes ML, Buijs RM: A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes 2001;50:1237-1243.
57.
Monteleone P, Tortorella A, Docimo L, Maldonato MN, Canestrelli B, De LL, Maj M: Investigation of 3111T/C polymorphism of the CLOCK gene in obese individuals with or without binge eating disorder: association with higher body mass index. Neurosci Lett 2008;435:30-33.
58.
Garaulet M, Corbalan MD, Madrid JA, Morales E, Baraza JC, Lee YC, Ordovas JM: CLOCK gene is implicated in weight reduction in obese patients participating in a dietary programme based on the Mediterranean diet. Int J Obes (Lond) 2010;34:516-523.
59.
Ye D, Cai S, Jiang X, Ding Y, Chen K, Fan C, Jin M: Associations of polymorphisms in circadian genes with abdominal obesity in Chinese adult population. Obes Res Clin Pract 2016;10(suppl 1):S133-S141.
60.
Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C, Sparso T, Holmkvist J, Marchand M, Delplanque J, Lobbens S, Rocheleau G, Durand E, De Graeve F, Chevre JC, Borch-Johnsen K, Hartikainen AL, Ruokonen A, Tichet J, Marre M, Weill J, Heude B, Tauber M, Lemaire K, Schuit F, Elliott P, Jorgensen T, Charpentier G, Hadjadj S, Cauchi S, Vaxillaire M, Sladek R, Visvikis-Siest S, Balkau B, Levy-Marchal C, Pattou F, Meyre D, Blakemore AI, Jarvelin MR, Walley AJ, Hansen T, Dina C, Pedersen O, Froguel P: A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet 2009;41:89-94.
61.
Prokopenko I, Langenberg C, Florez JC, Saxena R, et al: Variants in MTNR1B influence fasting glucose levels. Nat Genet 2009;41:77-81.
62.
Lyssenko V, Nagorny CL, Erdos MR, Wierup N, Jonsson A, Spegel P, Bugliani M, Saxena R, Fex M, Pulizzi N, Isomaa B, Tuomi T, Nilsson P, Kuusisto J, Tuomilehto J, Boehnke M, Altshuler D, Sundler F, Eriksson JG, Jackson AU, Laakso M, Marchetti P, Watanabe RM, Mulder H, Groop L: Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet 2009;41:82-88.
63.
Bonnefond A, Clement N, Fawcett K, Yengo L, Vaillant E, Guillaume JL, Dechaume A, Payne F, Roussel R, Czernichow S, Hercberg S, Hadjadj S, Balkau B, Marre M, Lantieri O, Langenberg C, Bouatia-Naji N, Charpentier G, Vaxillaire M, Rocheleau G, Wareham NJ, Sladek R, McCarthy MI, Dina C, Barroso I, Jockers R, Froguel P: Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet 2012;44:297-301.
64.
Salman M, Dasgupta S, Cholendra A, Venugopal PN, Lakshmi GL, Xaviour D, Rao J, D'Souza CJ: MTNR1B gene polymorphisms and susceptibility to type 2 diabetes: a pilot study in South Indians. Gene 2015;566:189-193.
65.
Hu C, Jia W: Linking MTNR1B variants to diabetes: the role of circadian rhythms. Diabetes 2016;65:1490-1492.
66.
Yamaguchi M, Uemura H, Arisawa K, Katsuura-Kamano S, Hamajima N, Hishida A, Suma S, Oze I, Nakamura K, Takashima N, Suzuki S, Ibusuki R, Mikami H, Ohnaka K, Kuriyama N, Kubo M, Tanaka H: Association between brain-muscle-ARNT-like protein-2 (BMAL2) gene polymorphism and type 2 diabetes mellitus in obese Japanese individuals: a cross-sectional analysis of the Japan Multi-Institutional Collaborative Cohort Study Diabetes. Res Clin Pract 2015;110:301-308.
67.
Corella D, Asensio EM, Coltell O, Sorli JV, Estruch R, Martinez-Gonzalez MA, Salas-Salvado J, Castaner O, Aros F, Lapetra J, Serra-Majem L, Gomez-Gracia E, Ortega-Azorin C, Fiol M, Espino JD, Diaz-Lopez A, Fito M, Ros E, Ordovas JM: CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: dietary modulation in the PREDIMED randomized trial. Cardiovasc Diabetol 2016;15:4.
68.
Fonken LK, Nelson RJ: The effects of light at night on circadian clocks and metabolism. Endocr Rev 2014;35:648-670.
69.
Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA, Ellisman MH, Panda S: Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 2012;15:848-860.
70.
McFadden E, Jones ME, Schoemaker MJ, Ashworth A, Swerdlow AJ: The relationship between obesity and exposure to light at night: cross-sectional analyses of over 100,000 women in the Breakthrough Generations Study. Am J Epidemiol 2014;180:245-250.
71.
Burdelak W, Peplonska B: Night work and health of nurses and midwives - a review (in Polish). Med Pr 2013;64:397-418.
72.
Qin LQ, Li J, Wang Y, Wang J, Xu JY, Kaneko T: The effects of nocturnal life on endocrine circadian patterns in healthy adults. Life Sci 2003;73:2467-2475.
73.
Nguyen J, Wright KP Jr: Influence of weeks of circadian misalignment on leptin levels. Nat Sci Sleep 2009;2010:9-18.
74.
Salgado-Delgado R, Angeles-Castellanos M, Buijs MR, Escobar C: Internal desynchronization in a model of night-work by forced activity in rats. Neuroscience 2008;154:922-931.
75.
Salgado-Delgado RC, Saderi N, Basualdo MC, Guerrero-Vargas NN, Escobar C, Buijs RM: Shift work or food intake during the rest phase promotes metabolic disruption and desynchrony of liver genes in male rats. PLoS One 2013;8:e60052.
76.
Grosbellet E, Dumont S, Schuster-Klein C, Guardiola-Lemaitre B, Pevet P, Criscuolo F, Challet E: Circadian phenotyping of obese and diabetic db/db mice. Biochimie 2016;124:198-206.
77.
Grosbellet E, Gourmelen S, Pevet P, Criscuolo F, Challet E: Leptin normalizes photic synchronization in male ob/ob mice, via indirect effects on the suprachiasmatic nucleus. Endocrinology 2015;156:1080-1090.
78.
Grosbellet E, Dumont S, Schuster-Klein C, Guardiola-Lemaitre B, Pevet P, Criscuolo F, Challet E: Leptin modulates the daily rhythmicity of blood glucose. Chronobiol Int 2015;32:637-649.
79.
Salgado-Delgado R, Nadia S, Angeles-Castellanos M, Buijs RM, Escobar C: In a rat model of night work, activity during the normal resting phase produces desynchrony in the hypothalamus. J Biol Rhythms 2010;25:421-431.
80.
Salgado-Delgado R, Angeles-Castellanos M, Saderi N, Buijs RM, Escobar C: Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology 2010;151:1019-1029.
81.
Yasumoto Y, Hashimoto C, Nakao R, Yamazaki H, Hiroyama H, Nemoto T, Yamamoto S, Sakurai M, Oike H, Wada N, Yoshida-Noro C, Oishi K: Short-term feeding at the wrong time is sufficient to desynchronize peripheral clocks and induce obesity with hyperphagia, physical inactivity and metabolic disorders in mice. Metabolism 2016;65:714-727.
82.
Pijut SS, Corbett DE, Wang Y, Li J, Charnigo RJ, Graf GA: Effect of peripheral circadian dysfunction on metabolic disease in response to a diabetogenic diet. Am J Physiol Endocrinol Metab 2016;310:E900-E911.
83.
Rakshit K, Hsu TW, Matveyenko AV: Bmal1 is required for beta cell compensatory expansion, survival and metabolic adaptation to diet-induced obesity in mice. Diabetologia 2016;59:734-743.
84.
Pivovarova O, Gogebakan O, Sucher S, Groth J, Murahovschi V, Kessler K, Osterhoff M, Rudovich N, Kramer A, Pfeiffer AF: Regulation of the clock gene expression in human adipose tissue by weight loss. Int J Obes (Lond) 2016;40:899-906.
85.
Costa Justus JF, Ligocki Campos AC, Figueroa AL, Gomis R, Santo MA, Favero GM, Milleo FQ, Vieira E: Early effect of bariatric surgery on the circadian rhythms of adipokines in morbidly obese women. Metab Syndr Relat Disord 2016;14:16-22.
86.
Smith J, Fahrenkrug J, Jorgensen HL, Christoffersen C, Goetze JP: Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue. Endocr Connect 2015;4:206-214.
87.
Genzer Y, Dadon M, Burg C, Chapnik N, Froy O: Effect of dietary fat and the circadian clock on the expression of brain-derived neurotrophic factor (BDNF). Mol Cell Endocrinol 2016;430:49-55.
88.
Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P: The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008;134:329-340.
89.
Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P: Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 2009;324:654-657.
90.
Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, Takahashi JS, Imai S, Bass J: Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 2009;324:651-654.
91.
Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U: SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008;134:317-328.
92.
Alenghat T, Meyers K, Mullican SE, Leitner K, Adeniji-Adele A, Avila J, Bucan M, Ahima RS, Kaestner KH, Lazar MA: Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 2008;456:997-1000.
93.
Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, Liu XS, Lazar MA: A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011;331:1315-1319.
94.
Milagro FI, Gomez-Abellan P, Campion J, Martinez JA, Ordovas JM, Garaulet M: CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int 2012;29:1180-1194.
95.
Samblas M, Milagro FI, Gomez-Abellan P, Martinez JA, Garaulet M: Methylation on the circadian gene BMAL1 is associated with the effects of a weight loss intervention on serum lipid levels. J Biol Rhythms 2016;31:308-317.
96.
Cano BP, Pagano ES, Jimenez-Ortega V, Fernandez-Mateos P, Esquifino AI, Cardinali DP: Melatonin normalizes clinical and biochemical parameters of mild inflammation in diet-induced metabolic syndrome in rats. J Pineal Res 2014;57:280-290.
97.
Mendez I, Vazquez-Martinez O, Hernandez-Munoz R, Valente-Godinez H, Diaz-Munoz M: Redox regulation and pro-oxidant reactions in the physiology of circadian systems. Biochimie 2016;124:178-186.
98.
Arora T, Taheri S: Sleep optimization and diabetes control: a review of the literature. Diabetes Ther 2015;6:425-468.
99.
Arora T, Chen MZ, Cooper AR, Andrews RC, Taheri S: The impact of sleep debt on excess adiposity and insulin sensitivity in patients with early type 2 diabetes mellitus. J Clin Sleep Med 2016;12:673-680.
100.
Arora T, Chen MZ, Omar OM, Cooper AR, Andrews RC, Taheri S: An investigation of the associations among sleep duration and quality, body mass index and insulin resistance in newly diagnosed type 2 diabetes mellitus patients. Ther Adv Endocrinol Metab 2016;7:3-11.
101.
Valladares M, Obregon AM, Chaput JP: Association between genetic variants of the clock gene and obesity and sleep duration. J Physiol Biochem 2015;71:855-860.
102.
Damiola F, Le MN, Preitner N, Kornmann B, Fleury-Olela F, Schibler U: Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 2000;14:2950-2961.
103.
Hirao A, Tahara Y, Kimura I, Shibata S: A balanced diet is necessary for proper entrainment signals of the mouse liver clock. PLoS One 2009;4:e6909.
104.
Kuroda H, Tahara Y, Saito K, Ohnishi N, Kubo Y, Seo Y, Otsuka M, Fuse Y, Ohura Y, Hirao A, Shibata S: Meal frequency patterns determine the phase of mouse peripheral circadian clocks. Sci Rep 2012;2:711.
105.
Itokawa M, Hirao A, Nagahama H, Otsuka M, Ohtsu T, Furutani N, Hirao K, Hatta T, Shibata S: Time-restricted feeding of rapidly digested starches causes stronger entrainment of the liver clock in PER2:: LUCIFERASE knock-in mice. Nutr Res 2013;33:109-119.
106.
Oike H, Nagai K, Fukushima T, Ishida N, Kobori M: Feeding cues and injected nutrients induce acute expression of multiple clock genes in the mouse liver. PLoS One 2011;6:e23709.
107.
Oike H, Kobori M, Suzuki T, Ishida N: Caffeine lengthens circadian rhythms in mice. Biochem Biophys Res Commun 2011;410:654-658.
108.
Oike H, Nagai K, Fukushima T, Ishida N, Kobori M: High-salt diet advances molecular circadian rhythms in mouse peripheral tissues. Biochem Biophys Res Commun 2010;402:7-13.
109.
Oike H, Kobori M: Resveratrol regulates circadian clock genes in Rat-1 fibroblast cells. Biosci Biotechnol Biochem 2008;72:3038-3040.
110.
Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J: High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 2007;6:414-421.
111.
Eckel-Mahan KL, Patel VR, de MS, Orozco-Solis R, Ceglia NJ, Sahar S, Dilag-Penilla SA, Dyar KA, Baldi P, Sassone-Corsi P: Reprogramming of the circadian clock by nutritional challenge. Cell 2013;155:1464-1478.
112.
Pendergast JS, Branecky KL, Yang W, Ellacott KL, Niswender KD, Yamazaki S: High-fat diet acutely affects circadian organisation and eating behavior. Eur J Neurosci 2013;37:1350-1356.
113.
Branecky KL, Niswender KD, Pendergast JS: Disruption of daily rhythms by high-fat diet is reversible. PLoS One 2015;10:e0137970.
114.
Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, Froy O: Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB J 2012;26:3493-3502.
115.
Hariri N, Thibault L: Dietary obesity caused by a specific circadian eating pattern. Chronobiol Int 2011;28:216-228.
116.
Jakubowicz D, Barnea M, Wainstein J, Froy O: High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity (Silver Spring) 2013;21:2504-2512.
117.
Garvey WT, Garber AJ, Mechanick JI, Bray GA, Dagogo-Jack S, Einhorn D, Grunberger G, Handelsman Y, Hennekens CH, Hurley DL, McGill J, Palumbo P, Umpierrez G, on Behalf of The Aace Obesity Scientific Committee: American Association of Clinical Endocrinologists and American College of Endocrinology position statement on the 2014 advanced framework for a new diagnosis of obesity as a chronic disease. Endocr Pract 2014;20:977-989.
118.
Garvey WT, Garber AJ, Mechanick JI, Bray GA, Dagogo-Jack S, Einhorn D, Grunberger G, Handelsman Y, Hennekens CH, Hurley DL, McGill J, Palumbo P, Umpierrez G, on Behalf of The Aace Obesity Scientific Committee: American Association of Clinical Endocrinologists and American College of Endocrinology consensus conference on obesity: building an evidence base for comprehensive action. Endocr Pract 2014;20:956-976.
119.
Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, Dagogo-Jack S, Davidson MB, Einhorn D, Garber JR, Garvey WT, Grunberger G, Handelsman Y, Hirsch IB, Jellinger PS, McGill JB, Mechanick JI, Rosenblit PD, Umpierrez G, Davidson MH: Aace/Ace comprehensive diabetes management algorithm 2015. Endocr Pract 2015;21:438-447.
120.
Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, Hu FB, Hubbard VS, Jakicic JM, Kushner RF, Loria CM, Millen BE, Nonas CA, Pi-Sunyer FX, Stevens J, Stevens VJ, Wadden TA, Wolfe BM, Yanovski SZ: 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol 2014;63:2985-3023.
121.
Apovian CM, Aronne LJ, Bessesen DH, McDonnell ME, Murad MH, Pagotto U, Ryan DH, Still CD: Pharmacological management of obesity: an endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2015;100:342-362.
122.
Look AHEAD Research Group: Eight-year weight losses with an intensive lifestyle intervention: the look AHEAD study. Obesity (Silver Spring) 2014;22:5-13.
123.
Fujioka K: Safety and tolerability of medications approved for chronic weight management. Obesity (Silver Spring) 2015;23(suppl 1):S7-S11.
124.
Inge TH, Krebs NF, Garcia VF, Skelton JA, Guice KS, Strauss RS, Albanese CT, Brandt ML, Hammer LD, Harmon CM, Kane TD, Klish WJ, Oldham KT, Rudolph CD, Helmrath MA, Donovan E, Daniels SR: Bariatric surgery for severely overweight adolescents: concerns and recommendations. Pediatrics 2004;114:217-223.
125.
Tsai WS, Inge TH, Burd RS: Bariatric surgery in adolescents: recent national trends in use and in-hospital outcome. Arch Pediatr Adolesc Med 2007;161:217-221.
126.
Benaiges D, Goday A, Pedro-Botet J, Mas A, Chillaron JJ, Flores-Le Roux JA: Bariatric surgery: to whom and when? Minerva Endocrinol 2015;40:119-128.
127.
Bult MJ, van DT, Muller AF: Surgical treatment of obesity. Eur J Endocrinol 2008;158:135-145.
128.
Busetto L, Dixon J, De LM, Shikora S, Pories W, Angrisani L: Bariatric surgery in class I obesity : a Position Statement from the International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO). Obes Surg 2014;24:487-519.
129.
Courcoulas AP, Christian NJ, Belle SH, Berk PD, Flum DR, Garcia L, Horlick M, Kalarchian MA, King WC, Mitchell JE, Patterson EJ, Pender JR, Pomp A, Pories WJ, Thirlby RC, Yanovski SZ, Wolfe BM: Weight change and health outcomes at 3 years after bariatric surgery among individuals with severe obesity. JAMA 2013;310:2416-2425.
130.
Gloy VL, Briel M, Bhatt DL, Kashyap SR, Schauer PR, Mingrone G, Bucher HC, Nordmann AJ: Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. BMJ 2013;347:f5934.
131.
Colquitt JL, Pickett K, Loveman E, Frampton GK: Surgery for weight loss in adults. Cochrane Database Syst Rev 2014;8: CD003641.
132.
Schauer PR, Bhatt DL, Kashyap SR: Bariatric surgery versus intensive medical therapy for diabetes. N Engl J Med 2014;371:682.
133.
Gonzalez-Campoy JM, St Jeor ST, Castorino K, Ebrahim A, Hurley D, Jovanovic L, Mechanick JI, Petak SM, Yu YH, Harris KA, Kris-Etherton P, Kushner R, Molini-Blandford M, Nguyen QT, Plodkowski R, Sarwer DB, Thomas KT: Clinical practice guidelines for healthy eating for the prevention and treatment of metabolic and endocrine diseases in adults: cosponsored by the American Association of Clinical Endocrinologists/the American College of Endocrinology and the Obesity Society: executive summary. Endocr Pract 2013;19:875-887.
134.
Fujioka K, DiBaise JK, Martindale RG: Nutrition and metabolic complications after bariatric surgery and their treatment JPEN. J Parenter Enteral Nutr 2011;35:52S-59S.
135.
Angrisani L, Santonicola A, Iovino P, Formisano G, Buchwald H, Scopinaro N: Bariatric surgery worldwide 2013. Obes Surg 2015;25:1822-1832.
136.
Apovian CM, Garvey WT, Ryan DH: Challenging obesity: patient, provider, and expert perspectives on the roles of available and emerging nonsurgical therapies. Obesity (Silver Spring) 2015;23:S1-S26.
137.
Scheer FA, Hilton MF, Mantzoros CS, Shea SA: Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 2009;106:4453-4458.
138.
Marcheva B, Ramsey KM, Bass J: Circadian genes and insulin exocytosis Cell Logist 2011;1:32-36.
139.
Garaulet M, Madrid JA: Chronobiology, genetics and metabolic syndrome. Curr Opin Lipidol 2009;20:127-134.
140.
Arendt J, Skene DJ: Melatonin as a chronobiotic. Sleep Med Rev 2005;9:25-39.
141.
Cardinali D: Melatonin as a chronobiotic-cytoprotective agent in sleep disorders; in Parmeggiani P, Velluti R (eds): The Physiological Nature of Sleep. London, Imperial College Press, 2005.
142.
Touitou Y, Bogdan A: Promoting adjustment of the sleep-wake cycle by chronobiotics. Physiol Behav 2007;90:294-300.
143.
Cardinali DP, Pagano ES, Scacchi Bernasconi PA, Reynoso R, Scacchi P: Disrupted chronobiology of sleep and cytoprotection in obesity: possible therapeutic value of melatonin. Neuroendocrinol Lett 2011;32:588-606.
144.
Tan DX, Manchester LC, Fuentes-Broto L, Paredes SD, Reiter RJ: Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity. Obes Rev 2011;12:167-188.
145.
Cardinali DP, Bernasconi PA, Reynoso R, Toso CF, Scacchi P: Melatonin may curtail the metabolic syndrome: studies on initial and fully established fructose-induced metabolic syndrome in rats. Int J Mol Sci 2013;14:2502-2514.
146.
Kozirog M, Poliwczak AR, Duchnowicz P, Koter-Michalak M, Sikora J, Broncel M: Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome. J Pineal Res 2011;50:261-266.
147.
Gonciarz M, Bielanski W, Partyka R, Brzozowski T, Konturek PC, Eszyk J, Celinski K, Reiter RJ, Konturek SJ: Plasma insulin, leptin, adiponectin, resistin, ghrelin, and melatonin in nonalcoholic steatohepatitis patients treated with melatonin. J Pineal Res 2013;54:154-161.
148.
Gonciarz M, Gonciarz Z, Bielanski W, Mularczyk A, Konturek PC, Brzozowski T, Konturek SJ: The effects of long-term melatonin treatment on plasma liver enzymes levels and plasma concentrations of lipids and melatonin in patients with nonalcoholic steatohepatitis: a pilot study J Physiol Pharmacol 2012;63:35-40.
149.
Romo-Nava F, Alvarez-Icaza GD, Fresan-Orellana A, Saracco AR, Becerra-Palars C, Moreno J, Ontiveros Uribe MP, Berlanga C, Heinze G, Buijs RM: Melatonin attenuates antipsychotic metabolic effects: an eight-week randomized, double-blind, parallel-group, placebo-controlled clinical trial. Bipolar Disord 2014;16:410-421.
150.
Modabbernia A, Heidari P, Soleimani R, Sobhani A, Roshan ZA, Taslimi S, Ashrafi M, Modabbernia MJ: Melatonin for prevention of metabolic side-effects of olanzapine in patients with first-episode schizophrenia: randomized double-blind placebo-controlled study. J Psychiatr Res 2014;53:133-140.
151.
Cardinali DP, Srinivasan V, Brzezinski A, Brown GM: Melatonin and its analogs in insomnia and depression. J Pineal Res 2012;52:365-375.
152.
Weishaupt JH, Bartels C, Polking E, Dietrich J, Rohde G, Poeggeler B, Mertens N, Sperling S, Bohn M, Huther G, Schneider A, Bach A, Siren AL, Hardeland R, Bahr M, Nave KA, Ehrenreich H: Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J Pineal Res 2006;41:313-323.
153.
Gagliardino JJ: Physiological endocrine control of energy homeostasis and postprandial blood glucose levels. Eur Rev Med Pharmacol Sci 2005;9:75-92.
154.
Cusi K: The role of adipose tissue and lipotoxicity in the pathogenesis of type 2 diabetes. Curr Diab Rep 2010;10:306-315.
155.
Norman D, Isidori AM, Frajese V, Caprio M, Chew SL, Grossman AB, Clark AJ, Michael Besser G, Fabbri A: ACTH and alpha-MSH inhibit leptin expression and secretion in 3T3-L1 adipocytes: model for a central-peripheral melanocortin-leptin pathway. Mol Cell Endocrinol 2003;200:99-109.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.