Kisspeptin is a neuropeptide that signals via a Gαq-coupled receptor, GPR54, in gonadotropin-releasing hormone (GnRH) neurons and is essential for pubertal maturation and fertility. Kisspeptin depolarizes and excites GnRH neurons primarily through the activation of canonical transient receptor potential (TRPC) channels and the inhibition of K+ channels. The gonadal steroid 17β-estradiol (E2) upregulates not only kisspeptin (Kiss1) mRNA but also increases the excitability of the rostral forebrain Kiss1 neurons. In addition, a primary postsynaptic action of E2 on GnRH neurons is to upregulate the expression of channel transcripts that orchestrate the downstream signaling of kisspeptin in GnRH neurons. These include not only TRPC4 channels but also low-voltage-activated T-type calcium channels and high-voltage-activated L-, N- and R-type calcium channel transcripts. Moreover, E2 has direct membrane-initiated actions to alter the excitability of GnRH neurons by enhancing ATP-sensitive potassium channel activity, which is critical for maintaining GnRH neurons in a hyperpolarized state for the recruitment of T-type calcium channels that are important for burst firing. Therefore, E2 modulates the excitability of GnRH neurons as well as of Kiss1 neurons by altering the expression and/or function of ion channels; moreover, kisspeptin provides critical excitatory input to GnRH neurons to facilitate burst firing activity and peptide release.

1.
Terasawa E, Rodriguez JS, Bridson WE, Wiegand SJ: Factors influencing the positive feedback action of estrogen upon luteinizing hormone surge in the ovariectomized guinea pig. Endocrinology 1979;104:680-686.
2.
Caraty A, Locatelli A, Martin GB: Biphasic response in the secretion of gonadotrophin-releasing hormone in ovariectomized ewes injected with oestradiol. J Endocrinol 1989;123:375-382.
3.
Chappell PE, Levine JE: Stimulation of gonadotropin-releasing hormone surges by estrogen. 1. Role of hypothalamic progesterone receptors. Endocrinology 2000;141:1477-1485.
4.
Spergel DJ, Kruth U, Hanley DF, Sprengel R, Seeburg PH: GABA- and glutamate-activated channels in green fluorescent protein-tagged gonadotropin-releasing hormone neurons in transgenic mice. J Neurosci 1999;19:2037-2050.
5.
Suter KJ, Song WJ, Sampson TL, Wuarin J-P, Saunders JT, Dudek FE, Moenter SM: Genetic targeting of green fluorescent protein to gonadotropin-releasing hormone neurons: characterization of whole-cell electrophysiological properties and morphology. Endocrinology 2000;141:412-419.
6.
Fujioka H, Suzuki M, Yamanouchi K, Ohta A, Nagashima H, Kato M, Nishihara M: Generation of transgenic rats expressing enhanced green fluorescent protein in gonadotropin-releasing hormone neurons. J Reprod Dev 2003;49:523-529.
7.
Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA: Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 2005;146:3686-3692.
8.
Han S-K, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, Clifton DK, Steiner RA, Herbison AE: Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 2005;25:11349-11356.
9.
Liu X, Lee K, Herbison AE: Kisspeptin excites gonadotropin-releasing hormone (GnRH) neurons through a phospholipase C/calcium-dependent pathway regulating multiple ion channels. Endocrinology 2008;149:4605-4614.
10.
Pielecka-Fortuna J, Chu Z, Moenter SM: Kisspeptin acts directly and indirectly to increase gonadotropin-releasing hormone neuron activity and its effects are modulated by estradiol. Endocrinology 2008;149:1979-1986.
11.
Zhang C, Roepke TA, Kelly MJ, Rønnekleiv OK: Kisspeptin depolarizes gonadotropin-releasing hormone neurons through activation of TRPC-like cationic channels. J Neurosci 2008;28:4423-4434.
12.
Kelly MJ, Rønnekleiv OK: Electrophysiological analysis of neuroendocrine neuronal activity in hypothalamic slices; in Levine JE (ed): Methods in Neurosciences: Pulsatility in Neuroendocrine Systems. San Diego, Academic Press, 1994, pp 47-67.
13.
Bosch MA, Zhang C, Rønnekleiv OK: Regulation of endogenous conductances in GnRH neurons by estrogens. Brain Res 2010;1364:25-34.
14.
Zhang C, Tonsfeldt KJ, Qiu J, Bosch MA, Kobayashi K, Steiner RA, Kelly MJ, Rønnekleiv OK: Molecular mechanisms that drive estradiol-dependent burst firing of Kiss1 neurons in the rostral periventricular preoptic area. Am J Physiol Endocrinol Metab 2013;305:E1384-E1397.
15.
McCormick DA, Huguenard JR: A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 1992;68:1384-1400.
16.
Lüthi A, McCormick DA: H-current: properties of a neuronal and network pacemaker. Neuron 1998;21:9-12.
17.
Kim D, Song I, Keum S, Lee T, Jeong MJ, Kim SS, McEnery MW, Shin HS: Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha (1G) T-type Ca(2+) channels. Neuron 2001;31:35-45.
18.
Kelly MJ, Wagner EJ: GnRH neurons and episodic bursting activity. Trends Endocrinol Metab 2002;13:409-410.
19.
Lyons DJ, Horjales-Araujo E, Broberger C: Synchronized network oscillations in rat tuberoinfundibular dopamine neurons: switch to tonic discharge by thyrotropin-releasing hormone. Neuron 2010;65:217-229.
20.
Chen X, Iremonger K, Herbison A, Kirk V, Sneyd J: Regulation of electrical bursting in a spatiotemporal model of a GnRH neuron. Bull Math Biol 2013;75:1941-1960.
21.
Moenter SM, Anthony DR, Pitts GR, Nunemaker CS: Mechanisms underlying episodic gonadotropin-releasing hormone secretion. Front Neuroendocrinol 2003;24:79-93.
22.
Chu Z, Moenter SM: Physiologic regulation of a tetrodotoxin-sensitive sodium influx that mediates a slow afterdepolarization potential in gonadotropin-releasing hormone neurons: possible implications for the central regulation of fertility. J Neurosci 2006;26:11961-11973.
23.
Popa SM, Clifton DK, Steiner RA: The role of kisspeptins and GPR54 in the neuroendocrine regulation of reproduction. Annu Rev Physiol 2008;70:14.1-14.26.
24.
Colledge WH: Kisspeptins and GnRH neuronal signalling. Trends Endocrinol Metab 2009;3:115-121.
25.
Lee K, Duan W, Sneyd J, Herbison AE: Two slow calcium-activated afterhyperpolarization currents control burst firing dynamics in gonadotropin-releasing hormone neurons. J Neurosci 2010;30:6214-6224.
26.
Herbison AE, Moenter SM: Depolarising and hyperpolarising actions of GABA(A) receptor activation on gonadotrophin-releasing hormone neurons: towards an emerging consensus. J Neuroendocrinol 2011;23:557-569.
27.
Pielecka-Fortuna J, DeFazio RA, Moenter SM: Voltage-gated potassium currents are targets of diurnal changes in estradiol feedback reglation and kisspeptin action on gonadotropin-releasing hormone neurons in mice. Biol Reprod 2011;85:987-995.
28.
Chu Z, Tomaiuolo M, Bertram R, Moenter SM: Two types of burst firing in gonadotropin-releasing hormone neurones. J Neuroendocrinol 2012;24:1065-1077.
29.
Frazão R, Cravo RM, Donato J Jr, Ratra DV, Clegg DJ, Elmquist JK, Zigman JM, Williams KW, Elias CF: Shift in Kiss1 cell activity requires estrogen receptor α. J Neurosci 2013;33:2807-2820.
30.
Piet R, de Croft S, Liu X, Herbison AE: Electrical properties of kisspeptin neurons and their regulation of GnRH neurons. Front Neuroendocrinol 2014, DOI: 10.1016/j.yfrne.2014. 05.006.
31.
Huguenard JR, Prince DA: A novel T-type current underlies prolonged Ca2+-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci 1992;12:3804-3817.
32.
Zhang C, Bosch MA, Rick EA, Kelly MJ, Rønnekleiv OK: 17β-Estradiol regulation of T-type calcium channels in gonadotropin-releasing hormone neurons. J Neurosci 2009;29:10552-10562.
33.
Chu Z, Takagi H, Moenter SM: Hyperpolarization-activated currents in gonadotropin-releasing hormones (GnRH) neurons contribute to intrinsic excitability and are regulated by gonadal steroid feedback. J Neurosci 2010;30:13373-13383.
34.
Piet R, Boehm U, Herbison AE: Estrous cycle plasticity in the hyperpolarization-activated current Ih is mediated by circulating 17β- estradiol in preoptic area kisspeptin neurons. J Neurosci 2013;33:10828-10839.
35.
Perez-Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclay J, Williamson MP, Margaret F, Rees M, Lee J-H: Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 1998;391:896-900.
36.
Lee J-H, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klockner U, Schneider T, Perez-Reyes E: Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci 1999;19:1912-1921.
37.
Chemin J, Monteil A, Perez-Reyes E, Bourinet E, Nargeot J, Lory P: Specific contribution of human T-type calcium channel isotypes (alpha(1G), alpha(1H) and alpha(1I)) to neuronal excitability. J Physiol 2002;540:3-14.
38.
Kato M, Ui-Tei K, Watanabe M, Sakuma Y: Characterization of voltage-gated calcium currents in gonadotropin-releasing hormone neurons tagged with green fluorescent protein in rats. Endocrinology 2003;144:5118-5125.
39.
Cueni L, Canepari M, Lujan R, Emmenegger Y, Watanabe M, Bond CT, Franken P, Adelman JP, Luthi A: T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat Neurosci 2008;11:683-692.
40.
Liu S, Shipley MT: Multiple conductances cooperatively regulate spontaneous bursting in mouse olfactory bulb external tufted cells. J Neurosci 2008;28:1625-1639.
41.
Sun J, Chu Z, Moenter SM: Diurnal in vivo and rapid in vitro effects of estadiol on voltage-gated calcium channels in gonadotropin-releasing hormone neurons. J Neurosci 2010;30:3912-3923.
42.
Nunemaker CS, DeFazio RA, Moenter SM: Calcium current subtypes in GnRH neurons. Biol Reprod 2003;69:1914-1922.
43.
Spergel DJ: Calcium and small-conductance calcium-activated potassium channels in gonadotropin-releasing hormone neurons before, during, and after puberty. Endocrinology 2007;148:2383-2390.
44.
Tanaka N, Ishii H, Yin C, Koyama M, Sakuma Y, Kato M: Voltage-gated Ca2+ channel mRNAs and T-type Ca2+ currents in rat gonadotropin-releasing hormone neurons. J Physiol Sci 2010;60:195-204.
45.
Bosch MA, Tonsfeldt KJ, Rønnekleiv OK: mRNA expression of ion channels in GnRH neurons: subtype-specific regulation by 17β- estradiol. Mol Cell Endocrinol 2013;367:85-97.
46.
Christian CA, Mobley JL, Moenter SM: Diurnal and estradiol-dependent changes in gonadotropin-releasing hormone neuron firing activity. Proc Natl Acad Sci USA 2005;102:15682-15687.
47.
Lagrange AH, Rønnekleiv OK, Kelly MJ: Estradiol-17β and μ-opioid peptides rapidly hyperpolarize GnRH neurons: a cellular mechanism of negative feedback? Endocrinology 1995;136:2341-2344.
48.
Zhang C, Bosch MA, Levine JE, Rønnekleiv OK, Kelly MJ: Gonadotropin-releasing hormone neurons express K(ATP) channels that are regulated by estrogen and responsive to glucose and metabolic inhibition. J Neurosci 2007;27:10153-10164.
49.
Hille B: Potassium channels and chloride channels; in Hille B (ed): Ion Channels of Excitable Membranes. Sunderland, Sinauer, 2001, pp 131-165.
50.
Wu M, Dumalska I, Morozova E, Van den Pol AN, Alreja M: Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction. Proc Natl Acad Sci USA 2009;106:17217-17222.
51.
Zhang C, Bosch MA, Rønnekleiv OK, Kelly MJ: GABAB receptor mediated inhibition of GnRH neurons is suppressed by kisspeptin-GPR54 signaling. Endocrinology 2009;150:2388-2394.
52.
Xu J, Kirigiti MA, Cowley MA, Grove KL, Smith MS: Suppression of basal spontaneous gonadotropin-releasing hormone neuronal activity during lactation: role of inhibitory effects of neuropeptide Y. Endocrinology 2009;150:333-340.
53.
Bosch MA, Kelly MJ, Rønnekleiv OK: Distribution, neuronal co-localization and 17β-E2 modulation of small conductance calcium-activated K+ channel (SK3) mRNA in the guinea pig brain. Endocrinology 2002;143:1097-1107.
54.
Kato M, Tanaka N, Usui S, Sakuma Y: SK channel blocker apamin inhibits slow afterhyperpolarization currents in rat gonadotropin-releasing hormone neurons. J Physiol 2006;574:431-442.
55.
Wang Y, Kuehl-Kovarik MC: Flufenamic acid modulates multiple currents in gonadotropin-releasing hormone neurons. Brain Res 2010;1353:94-105.
56.
Zhang C, Rønnekleiv OK, Kelly MJ: Kisspeptin inhibits a slow afterhyperpolarization current via protein kinase C and reduces spike-frequency adaptation in GnRH neurons. Am J Physiol Endocrinol Metab 2013;304:E1237-E1244.
57.
Hiraizumi Y, Nishimura I, Ishii H, Tanaka N, Takeshita T, Sakuma Y, Kato M: Rat GnRH neurons exhibit large conductance voltage- and Ca2+-activated K+ (BK) currents and express BK channel mRNAs. J Physiol Sci 2008;58:21-29.
58.
Liu X, Herbison AE: Small-conductance calcium-activated potassium channels control excitability and firing dynamics in gonadotropin-releasing hormone (GnRH) neurons. Endocrinology 2008;149:3598-3604.
59.
Chu Z, Andrade J, Shupnik MA, Moenter SM: Differential regulation of gonadotropin-releasing hormone neuron activity and membrane properties by acutely applied estradiol: dependence on dose and estrogen receptor subtype. J Neurosci 2009;29:5616-5627.
60.
Sah P, Faber ESL: Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol 2002;66:345-353.
61.
Kelly MJ, Rønnekleiv OK, Eskay RL: Identification of estrogen-responsive LHRH neurons in the guinea pig hypothalamus. Brain Res Bull 1984;12:399-407.
62.
Condon TP, Rønnekleiv OK, Kelly MJ: Estrogen modulation of the α1-adrenergic response of hypothalamic neurons. Neuroendocrinology 1989;50:51-58.
63.
Zhang C, Kelly MJ, Rønnekleiv OK: 17β-Estradiol rapidly increases ATP-sensitive potassium channel activity in gonadotropin-releasing hormone neurons via a protein kinase signaling pathway. Endocrinology 2010;151:4477-4484.
64.
Lagrange AH, Rønnekleiv OK, Kelly MJ: Modulation of G-protein-coupled receptors by an estrogen receptor that activates protein kinase A. Mol Pharmacol 1997;51:605-612.
65.
Qiu J, Bosch MA, Tobias SC, Grandy DK, Scanlan TS, Rønnekleiv OK, Kelly MJ: Rapid signaling of estrogen in hypothalamic neurons involves a novel G-protein-coupled estrogen receptor that activates protein kinase C. J Neurosci 2003;23:9529-9540.
66.
Qiu J, Bosch MA, Tobias SC, Krust A, Graham S, Murphy S, Korach KS, Chambon P, Scanlan TS, Rønnekleiv OK, Kelly MJ: A G-protein-coupled estrogen receptor is involved in hypothalamic control of energy homeostasis. J Neurosci 2006;26:5649-5655.
67.
Rønnekleiv OK, Zhang C, Kelly MJ: Estradiol and kisspeptin modulation of gonadotropin-releasing hormone (GnRH) neuronal excitability; in Armstong WE, Tasker JG (eds): Neurophysiology of Neuroendocrine Neurons. Hoboken, John Wiley and Sons, 2014, pp 301-321.
68.
Weatherill PJ, Wilson APM, Nicholson RI, Davies P, Wakeling AE: Interaction of the antioestrogen ICI 164,384 with the oestrogen receptor. J Steroid Biochem 1988;30:263-266.
69.
Romanò N, Lee K, Ábrahám IM, Jasoni CL, Herbison AE: Non-classical estrogen modulation of presynaptic GABA terminals modulates calcium dynamics in gonadotropin-releasing hormone (GnRH) neurons. Endocrinology 2008;149:5335-5344.
70.
Abraham IM, Han SK, Todman MG, Korach KS, Herbison AE: Estrogen receptor beta mediates rapid estrogen actions on gonadotropin-releasing hormone neurons in vivo. J Neurosci 2003;23:5771-5777.
71.
Terasawa E, Schanhofer WK, Keen KL, Luchansky LL: Intracellular Ca2+ oscillations in luteinizing hormone-releasing hormone neurons derived from the embryonic olfactory placode of the rhesus monkey. J Neurosci 1999;19:5898-5909.
72.
Richter TA, Keen KL, Terasawa E: Synchronization of Ca2+ oscillations among primate LHRH neurons and nonneuronal cells in vitro. J Neurophysiol 2002;88:1559-1567.
73.
Temple JL, Laing E, Sunder A, Wray S: Direct action of estradiol on gonadotropin-releasing hormone-1 neuronal activity via a transcription-dependent mechanism. J Neurosci 2004;24:6326-6333.
74.
Temple JL, Wray S: BSA-estrogen compounds differentially alter gonadotropin-releasing hormone-1 neuronal activity. Endocrinology 2005;146:558-563.
75.
Kenealy BP, Keen KL, Rønnekleiv OK, Terasawa E: STX, a novel nonsteroidal estrogenic compound, induces rapid action in primate GnRH neuronal calcium dynamics and peptide release. Endocrinology 2011;152:182-191.
76.
Abe H, Keen KL, Terasawa E: Rapid action of estrogens on intracellular calcium oscillations in primate LHRH-1 neurons. Endocrinology 2008;149:1155-1162.
77.
Kenealy BP, Keen KL, Terasawa E: Rapid action of estradiol in primate GnRH neurons: the role of estrogen receptor alpha and estrogen receptor beta. Steroids 2011;76:861-866.
78.
Constantin S, Caligioni CS, Stojilkovic S, Wray S: Kisspeptin-10 facilitates a plasma membrane-driven calcium oscillator in gonadotropin-releasing hormone-1 neurons. Endocrinology 2009;150:1400-1412.
79.
Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden J-M, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M: The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2001;276:34631-34636.
80.
Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O'Rahilly S, Carlton MBL, Crowley WF, Aparicio SA Jr, Colledge WH: The GPR54 gene as a regulator of puberty. N Engl J Med 2003;349:1614-1627.
81.
d'Anglemont de Tassigny X, Fagg LA, Dixon JPC, Day K, Leitch HG, Hendrick AG, Zahn D, Franceschini I, Caraty A, Carlton MBL, Aparicio SA Jr, Colledge WH: Hypogonadotropic hypogonadism in mice lacking a functional KiSS 1 gene. Proc Natl Acad Sci USA 2007;104:10714-10719.
82.
Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA: A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 2004;145:4073-4077.
83.
Kinoshita M, Tsukamura H, Adachi S, Matsui H, Uenoyama Y, Iwata K, Yamada S, Inoue K, Ohtaki T, Matsumoto H, Maeda K-I: Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology 2005;146:4431-4436.
84.
Simerly RB, McCall LD, Watson SJ: Distribution of opioid peptides in the preoptic region: immunohistochemical evidence for a steroid-sensitive enkephalin sexual dimorphism. J Comp Neurol 1988;276:442-459.
85.
Wagner EJ, Rønnekleiv OK, Bosch MA, Kelly MJ: Estrogen biphasically modifies hypothalamic GABAergic function concomitantly with negative and positive control of luteinizing hormone release. J Neurosci 2001;21:2085-2093.
86.
Jackson GL, Kuehl D: Gamma-aminobutyric acid (GABA) regulation of GnRH secretion in sheep. Reproduction 2002;59:15-24.
87.
DeFazio RA, Heger S, Ojeda SR, Moenter SM: Activation of A-type gamma-aminobutyric receptors excites gonadotropin-releasing hormone neurons. Mol Endocrinol 2002;16:2872-2891.
88.
Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA: Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci 2006;26:6687-6694.
89.
Christian CA, Moenter SM: Estradiol induces diurnal shifts in GABA transmission to gonadotropin-releasing hormone neurons to provide a neural signal for ovulation. J Neurosci 2007;27:1913-1921.
90.
Shughrue PJ, Lane MV, Merchenthaler I: Comparative distribution of estrogen receptor-α and -β mRNA in the rat central nervous system. J Comp Neurol 1997;388:507-525.
91.
Wintermantel TM, Campbell RE, Porteous R, Bock D, Gröne H-J, Todman MG, Korach KS, Greiner E, Perez CA, Schultz G, Herbison AE: Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin-releasing hormone neurons and fertility. Neuron 2006;52:271-280.
92.
Clarkson J, d'Anglemont de Tassigny X, Moreno AS, Colledge WH, Herbison AE: Kisspeptin-GPR54 signaling is essential for preovulatory gonadotropin-releasing hormone neuron activation and the luteinizing hormone surge. J Neurosci 2008;28:8691-8697.
93.
Wiegand SJ, Terasawa E, Bridson WE: Persistent estrus and blockade of progesterone-induced LH release follows lesions which do not damage the suprachiasmatic nucleus. Endocrinology 1978;102:1645-1648.
94.
Rønnekleiv OK, Kelly MJ: Plasma prolactin and luteinizing hormone profiles during the estrous cycle of the female rat: effects of surgically induced persistent estrus. Neuroendocrinology 1988;47:133-141.
95.
Petersen SL, Barraclough CA: Suppression of spontaneous LH surges in estrogen-treated ovariectomized rats by microimplants of antiestrogens into the preoptic brain. Brain Res 1989;484:279-289.
96.
Ma YJ, Kelly MJ, Rønnekleiv OK: Pro-gonadotropin-releasing hormone (ProGnRH) and GnRH content in the preoptic area and the basal hypothalamus of anterior medial preoptic nucleus/suprachiasmatic nucleus-lesioned persistent estrous rats. Endocrinology 1990;127:2654-2664.
97.
Kroll H, Bolsover S, Hsu J, Kim S-H, Bouloux P-M: Kisspeptin-evoked calcium signals in isolated primary rat gonadotropin-releasing hormone neurones. Neuroendocrinology 2011;93:114-120.
98.
Zhang C, Bosch MA, Rønnekleiv OK, Kelly MJ: Kisspeptin activation of TRPC4 channels in female GnRH neurons requires PIP2 depletion and cSrc kinase activation. Endocrinology 2013;154:2772-2783.
99.
Zhang X-B, Spergel DJ: Kisspeptin inhibits high-voltage activated Ca2+ channels in GnRH neurons via multiple Ca2+ influx and release pathways. Neuroendocrinology 2012;96:68-80.
100.
Odell AF, Scott JL, Van Helden DF: Epidermal growth factor induces tyrosine phosphorylation, membrane insertion, and activation of transient receptor potential channel 4. J Biol Chem 2012;280:37974-37987.
101.
Birnbaumer L: The TRPC class of ion channels: a critical review of their roles in slow, sustained increases in intracellular Ca2+ concentrations. Annu Rev Pharmacol Toxicol 2009;49:395-426.
102.
Wakerley JB, Lincoln DW: The milk-ejection reflex of the rat: a 20- to 40- fold acceleration in the firing of paraventricular neurones during oxytocin release. J Endocrinol 1973;57:477-493.
103.
Bicknell RJ: Optimizing release from peptide hormone secretory nerve terminals. J Exp Biol 1988;139:51-65.
104.
Shakiryanova D, Tully A, Hewes RS, Deitcher DL, Levitan ES: Activity-dependent liberation of synaptic neuropeptide vesicles. Nat Neurosci 2005;8:173-178.
105.
Masterson SP, Li J, Bickford ME: Frequency-dependent release of substance P mediates heterosynaptic potentiation of glutamatergic synaptic responses in the rat visual thalamus. J Neurophysiol 2010;104:1758-1767.
106.
Liu X, Porteous R, d'Anglemont de Tassigny X, Colledge WH, Millar R, Petersen SL, Herbison AE: Frequency-dependent recruitment of fast amino acid and slow neuropeptide neurotransmitter release controls gonadotropin-releasing hormone neuron excitability. J Neurosci 2011;31:2421-2430.
107.
Gottsch ML, Popa SM, Lawhorn JK, Qiu J, Tonsfeldt KJ, Bosch MA, Kelly MJ, Rønnekleiv OK, Sanz E, McKnight GS, Clifton DK, Palmiter RD, Steiner RA: Molecular properties of Kiss1 neurons in the arcuate nucleus of the mouse. Endocrinology 2011;152:4298-4309.
108.
Cravo RM, Margatho LO, Osborne-Lawrence S, Donato J Jr, Atkin S, Bookout AL, Rovinsky S, Frazão R, Lee CE, Gautron L, Zigman JM, Elias CF: Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience 2011;173:37-56.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.