Multiple sclerosis is a chronic inflammatory disease affecting the central nervous system. As reported by clinical observations, variation in hormonal levels might alter disease susceptibility and progression. Specifically, decreased levels of testosterone in males are reported to be permissive for disease onset. Accordingly, testosterone seems to exert protective effects in experimental autoimmune encephalomyelitis (EAE). In this context, it is important to highlight that testosterone is further metabolized into 17ß-estradiol or dihydrotestosterone (DHT). In this study, we aimed to explore the protective effects of DHT treatment in EAE Dark Agouti rats (i.e. an experimental model showing a protracted relapsing EAE). Data obtained 45 days after EAE induction showed that DHT exerts a beneficial effect on clinical scores, coupled with decreased gliosis (i.e. glial fibrillary acidic protein and major histocompatibility complex of class II staining) and inflammation (i.e. translocator protein 18 kDa, interleukin-1ß, Toll-like receptor 4 and nuclear factor-κB expression) in the spinal cord. Moreover, parameters linked to oxidative stress and tissue damage, like thiobarbituric acid-reactive substance levels and Bcl-2-associated X protein expression, and to mitochondrial activity (i.e. content of mitochondrial DNA and proteins), were improved after DHT administration. This neuroactive steroid may be further metabolized into 3a- or 3ß-diol. However, assessment of the levels of these metabolites after DHT treatment seems to suggest that the protective effects observed here are due to DHT itself. Altogether, the present results indicate that DHT was effective in reducing the severity of chronic EAE and, consequently, may represent an interesting perspective for multiple sclerosis treatment.

1.
Lassmann H, van Horssen J: The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett 2011;585:3715-3723.
2.
Kipp M, van der Valk P, Amor S: Pathology of multiple sclerosis. CNS Neurol Disord Drug Targets 2012;11:506-517.
3.
Kalman B, Laitinen K, Komoly S: The involvement of mitochondria in the pathogenesis of multiple sclerosis. J Neuroimmunol 2007;188:1-12.
4.
Mao P, Reddy PH: Is multiple sclerosis a mitochondrial disease? Biochim Biophys Acta 2010;1802:66-79.
5.
Witte ME, Mahad DJ, Lassmann H, van Horssen J: Mitochondrial dysfunction contributes to neurodegeneration in multiple sclerosis. Trends Mol Med 2014;20:179-187.
6.
Caruso D, Melis M, Fenu G, Giatti S, Romano S, Grimoldi M, Crippa D, Marrosu MG, Cavaletti G, Melcangi RC: Neuroactive steroid levels in plasma and cerebrospinal fluid of male multiple sclerosis patients. J Neurochem 2014;130:591-597.
7.
Caruso D, D'Intino G, Giatti S, Maschi O, Pesaresi M, Calabrese D, Garcia-Segura LM, Calza L, Melcangi RC: Sex-dimorphic changes in neuroactive steroid levels after chronic experimental autoimmune encephalomyelitis. J Neurochem 2010;114:921-932.
8.
Giatti S, D'Intino G, Maschi O, Pesaresi M, Garcia-Segura LM, Calza L, Caruso D, Melcangi RC: Acute experimental autoimmune encephalomyelitis induces sex dimorphic changes in neuroactive steroid levels. Neurochem Int 2010;56:118-127.
9.
Sadovnick AD: European Charcot Foundation Lecture: the natural history of multiple sclerosis and gender. J Neurol Sci 2009;286:1-5.
10.
Darlington C: Multiple sclerosis and gender. Curr Opin Investig Drugs 2002;3:911-914.
11.
Confavreux C, Vukusic S: Natural history of multiple sclerosis: a unifying concept. Brain 2006;129:606-616.
12.
Holmqvist P, Wallberg M, Hammar M, Landtblom AM, Brynhildsen J: Symptoms of multiple sclerosis in women in relation to sex steroid exposure. Maturitas 2006;54:149-153.
13.
Tomassini V, Pozzilli C: Sex hormones, brain damage and clinical course of multiple sclerosis. J Neurol Sci 2009;286:35-39.
14.
Swerdloff RS, Wang C: Androgens and the ageing male. Best Pract Res Clin Endocrinol Metab 2004;18:349-362.
15.
Weinshenker BG: Natural history of multiple sclerosis. Ann Neurol 1994;36:S6-S11.
16.
Palaszynski KM, Loo KK, Ashouri JF, Liu HB, Voskuhl RR: Androgens are protective in experimental autoimmune encephalomyelitis: implications for multiple sclerosis. J Neuroimmunol 2004;146:144-152.
17.
Dalal M, Kim S, Voskuhl RR: Testosterone therapy ameliorates experimental autoimmune encephalomyelitis and induces a T helper 2 bias in the autoantigen-specific T lymphocyte response. J Immunol 1997;159:3-6.
18.
Bebo BF Jr, Schuster JC, Vandenbark AA, Offner H: Androgens alter the cytokine profile and reduce encephalitogenicity of myelin-reactive T cells. J Immunol 1999;162:35-40.
19.
Sicotte NL, Giesser BS, Tandon V, Klutch R, Steiner B, Drain AE, Shattuck DW, Hull L, Wang HJ, Elashoff RM, Swerdloff RS, Voskuhl RR: Testosterone treatment in multiple sclerosis: a pilot study. Arch Neurol 2007;64:683-688.
20.
Kurth F, Luders E, Sicotte NL, Gaser C, Giesser BS, Swerdloff RS, Montag MJ, Voskuhl RR, Mackenzie-Graham A: Neuroprotective effects of testosterone treatment in men with multiple sclerosis. Neuroimage Clin 2014;4:454-460.
21.
Oliveira AG, Coelho PH, Guedes FD, Mahecha GA, Hess RA, Oliveira CA: 5α-Androstane-3β,17β-diol (3β-diol), an estrogenic metabolite of 5α-dihydrotestosterone, is a potent modulator of estrogen receptor ERβ expression in the ventral prostrate of adult rats. Steroids 2007;72:914-922.
22.
Melcangi RC, Garcia-Segura LM, Mensah-Nyagan AG: Neuroactive steroids: state of the art and new perspectives. Cell Mol Life Sci 2008;65:777-797.
23.
Ziehn MO, Avedisian AA, Dervin SM, Umeda EA, O'Dell TJ, Voskuhl RR: Therapeutic testosterone administration preserves excitatory synaptic transmission in the hippocampus during autoimmune demyelinating disease. J Neurosci 2012;32:12312-12324.
24.
Giatti S, Boraso M, Abbiati F, Ballarini E, Calabrese D, Santos-Galindo M, Rigolio R, Pesaresi M, Caruso D, Viviani B, Cavaletti G, Garcia-Segura LM, Melcangi RC: Multimodal analysis in acute and chronic experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 2013;8:238-250.
25.
Cavaletti G, Cavalletti E, Crippa L, Di Luccio E, Oggioni N, Mazzanti B, Biagioli T, Sala F, Sala V, Frigo M, Rota S, Tagliabue E, Stanzani L, Galbiati S, Rigolio R, Zoia C, Tredici G, Perseghin P, Dassi M, Riccio P, Lolli F: Pixantrone (BBR2778) reduces the severity of experimental allergic encephalomyelitis. J Neuroimmunol 2004;151:55-65.
26.
Rigolio R, Biffi A, Oggioni N, Cavaletti G: Actively induced EAE in Lewis rats: characterization of spleen and spinal cord infiltrating lymphocytes by flow cytometry during the course of the disease. J Neuroimmunol 2008;199:67-74.
27.
Caruso D, Pesaresi M, Abbiati F, Calabrese D, Giatti S, Garcia-Segura LM, Melcangi RC: Comparison of plasma and cerebrospinal fluid levels of neuroactive steroids with their brain, spinal cord and peripheral nerve levels in male and female rats. Psychoneuroendocrinology 2013;38:2278-2290.
28.
Tapia-Gonzalez S, Carrero P, Pernia O, Garcia-Segura LM, Diz-Chaves Y: Selective oestrogen receptor (ER) modulators reduce microglia reactivity in vivo after peripheral inflammation: potential role of microglial ERs. J Endocrinol 2008;198:219-230.
29.
Hatton WJ, von Bartheld CS: Analysis of cell death in the trochlear nucleus of the chick embryo: calibration of the optical disector counting method reveals systematic bias. J Comp Neurol 1999;409:169-186.
30.
Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987;162:156-159.
31.
Ha H, Endou H: Lipid peroxidation in isolated rat nephron segments. Am J Physiol 1992;263:F201-F207.
32.
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-254.
33.
McQueen JK, Wright AK, Arbuthnott GW, Fink G: Astrocytes immunoreactive for glial fibrillary acidic protein (GFAP) are increased in the mediobasal hypothalamus in hypogonadal (hpg) mice. Mol Cell Neurosci 1992;3:473-481.
34.
Barreto G, Veiga S, Azcoitia I, Garcia-Segura LM, Garcia-Ovejero D: Testosterone decreases reactive astroglia and reactive microglia after brain injury in male rats: role of its metabolites, oestradiol and dihydrotestosterone. Eur J Neurosci 2007;25:3039-3046.
35.
Giatti S, Caruso D, Boraso M, Abbiati F, Ballarini E, Calabrese D, Pesaresi M, Rigolio R, Santos-Galindo M, Viviani B, Cavaletti G, Garcia-Segura LM, Melcangi RC: Neuroprotective effects of progesterone in chronic experimental autoimmune encephalomyelitis. J Neuroendocrinol 2012;24:851-861.
36.
Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ, Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M: Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 2006;27:402-409.
37.
Venneti S, Lopresti BJ, Wiley CA: Molecular imaging of microglia/macrophages in the brain. Glia 2013;61:10-23.
38.
Qi X, Lewin AS, Sun L, Hauswirth WW, Guy J: Mitochondrial protein nitration primes neurodegeneration in experimental autoimmune encephalomyelitis. J Biol Chem 2006;281:31950-31962.
39.
Qi X, Lewin AS, Sun L, Hauswirth WW, Guy J: Suppression of mitochondrial oxidative stress provides long-term neuroprotection in experimental optic neuritis. Invest Ophthalmol Vis Sci 2007;48:681-691.
40.
Fargo KN, Foecking EM, Jones KJ, Sengelaub DR: Neuroprotective actions of androgens on motoneurons. Front Neuroendocrinol 2009;30:130-141.
41.
Gold SM, Voskuhl RR: Estrogen and testosterone therapies in multiple sclerosis. Prog Brain Res 2009;175:239-251.
42.
Pike CJ, Carroll JC, Rosario ER, Barron AM: Protective actions of sex steroid hormones in Alzheimer's disease. Front Neuroendocrinol 2009;30:239-258.
43.
Uchida M, Palmateer JM, Herson PS, DeVries AC, Cheng J, Hurn PD: Dose-dependent effects of androgens on outcome after focal cerebral ischemia in adult male mice. J Cereb Blood Flow Metab 2009;29:1454-1462.
44.
Cheng J, Alkayed NJ, Hurn PD: Deleterious effects of dihydrotestosterone on cerebral ischemic injury. J Cereb Blood Flow Metab 2007;27:1553-1562.
45.
Parodi S, Pennuto M: Neurotoxic effects of androgens in spinal and bulbar muscular atrophy. Front Neuroendocrinol 2011;32:416-425.
46.
Matejuk A, Hopke C, Vandenbark AA, Hurn PD, Offner H: Middle-age male mice have increased severity of experimental autoimmune encephalomyelitis and are unresponsive to testosterone therapy. J Immunol 2005;174:2387-2395.
47.
Caruso D, Pesaresi M, Maschi O, Giatti S, Garcia-Segura LM, Melcangi RC: Effect of short-and long-term gonadectomy on neuroactive steroid levels in the central and peripheral nervous system of male and female rats. J Neuroendocrinol 2010;22:1137-1147.
48.
Wang D, Ayers MM, Catmull DV, Hazelwood LJ, Bernard CC, Orian JM: Astrocyte-associated axonal damage in pre-onset stages of experimental autoimmune encephalomyelitis. Glia 2005;51:235-240.
49.
Kang Z, Altuntas CZ, Gulen MF, Liu C, Giltiay N, Qin H, Liu L, Qian W, Ransohoff RM, Bergmann C, Stohlman S, Tuohy VK, Li X: Astrocyte restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity 2010;32:414-425.
50.
Brambilla R, Persaud T, Hu X, Karmally S, Shestopalov VI, Dvoriantchikova G, Ivanov D, Nathanson L, Barnum SR, Bethea JR: Transgenic inhibition of astroglial NF-kappa B improves functional outcome in experimental autoimmune encephalomyelitis by suppressing chronic central nervous system inflammation. J Immunol 2009;182:2628-2640.
51.
Melcangi RC, Riva MA, Fumagalli F, Magnaghi V, Racagni G, Martini L: Effect of progesterone, testosterone and their 5 alpha-reduced metabolites on GFAP gene expression in type 1 astrocytes. Brain Res 1996;711:10-15.
52.
Calabrese D, Giatti S, Romano S, Porretta-Serapiglia C, Bianchi R, Milanese M, Bonanno G, Caruso D, Viviani B, Gardoni F, Garcia-Segura LM, Melcangi RC: Diabetic neuropathic pain: a role for testosterone metabolites. J Endocrinol 2014;221:1-13.
53.
Liva SM, Voskuhl RR: Testosterone acts directly on CD4+ T lymphocytes to increase IL-10 production. J Immunol 2001;167:2060-2067.
54.
Hussain R, Ghoumari AM, Bielecki B, Steibel J, Boehm N, Liere P, Macklin WB, Kumar N, Habert R, Mhaouty-Kodja S, Tronche F, Sitruk-Ware R, Schumacher M, Ghandour MS: The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain 2013;136:132-146.
55.
Tabori NE, Stewart LS, Znamensky V, Romeo RD, Alves SE, McEwen BS, Milner TA: Ultrastructural evidence that androgen receptors are located at extranuclear sites in the rat hippocampal formation. Neuroscience 2005;130:151-163.
56.
DonCarlos LL, Sarkey S, Lorenz B, Azcoitia I, Garcia-Ovejero D, Huppenbauer C, Garcia-Segura LM: Novel cellular phenotypes and subcellular sites for androgen action in the forebrain. Neuroscience 2006;138:801-807.
57.
Zhang D, Hu X, Qian L, O'Callaghan JP, Hong JS: Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 2010;41:232-241.
58.
Daugherty DJ, Selvaraj V, Chechneva OV, Liu XB, Pleasure DE, Deng W: A TSPO ligand is protective in a mouse model of multiple sclerosis. EMBO Mol Med 2013;5:891-903.
59.
Jensen CJ, Massie A, De Keyser J: Immune players in the CNS: the astrocyte. J Neuroimmune Pharmacol 2013;8:824-839.
60.
Heiman A, Pallottie A, Heary RF, Elkabes S: Toll-like receptors in central nervous system injury and disease: a focus on the spinal cord. Brain Behav Immun 2014;42:232-245.
61.
Kigerl KA, Lai W, Rivest S, Hart RP, Satoskar AR, Popovich PG: Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. J Neurochem 2007;102:37-50.
62.
Trotta T, Porro C, Calvello R, Panaro MA: Biological role of Toll-like receptor-4 in the brain. J Neuroimmunol 2014;268:1-12.
63.
Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Age FH, Glass CK: A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation induced death. Cell 2009;137:47-59.
64.
Pahan K, Schmid M: Activation of nuclear factor-κB in the spinal cord of experimental allergic encephalomyelitis. Neurosci Lett 2000;287:17-20.
65.
Garay LI, González Deniselle MC, Brocca ME, Lima A, Roig P, De Nicola AF: Progesterone down-regulates spinal cord inflammatory mediators and increases myelination in experimental autoimmune encephalomyelitis. Neuroscience 2012;226:40-50.
66.
Brambilla R, Morton PD, Ashbaugh JJ, Karmally S, Lambertsen KL, Bethea JR: Astrocytes play a key role in EAE pathophysiology by orchestrating in the CNS the inflammatory response of resident and peripheral immune cells and by suppressing remyelination. Glia 2014;62:452-467.
67.
Moon C, Kim S, Wie M, Kim H, Cheong J, Park J, Jee Y, Tanuma N, Matsumoto Y, Shin T: Increased expression of p53 and Bax in the spinal cords of rats with experimental autoimmune encephalomyelitis. Neurosci Lett 2000;289:41-44.
68.
Giacoppo S, Galuppo M, Iori R, De Nicola GR, Cassata G, Bramanti P, Mazzon E: Protective role of (RS)-glucoraphanin bioactivated with myrosinase in an experimental model of multiple sclerosis. CNS Neurosci Ther 2013;19:577-584.
69.
Tesarik J, Martinez F, Rienzi L, Iacobelli M, Ubaldi F, Mendoza C, Greco E: In-vitro effects of FSH and testosterone withdrawal on caspase activation and DNA fragmentation in different cell types of human seminiferous epithelium. Hum Reprod 2002;17:1811-1819.
70.
Simões VL, Alves MG, Martins AD, Dias TR, Rato L, Socorro S, Oliveira PF: Regulation of apoptotic signaling pathways by 5α-dihydrotestosterone and 17β-estradiol in immature rat Sertoli cells. J Steroid Biochem Mol Biol 2013;135:15-23.
71.
Mahad DJ, Lassmann H, Turnbull DM: Review: mitochondria and disease progression in multiple sclerosis. Neuropath Appl Neurobiol 2008;34:577-589.
72.
Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007;87:245-313.
73.
Murphy MP: How mitochondria produce reactive oxygen species. Biochem J 2009;417:1-13.
74.
Jomova K, Valko M: Advances in metal-induced oxidative stress and human disease. Toxicology 2011;283:65-87.
75.
Smith KJ, Kapoor R, Felts PA: Demyelination: the role of reactive oxygen and nitrogen species. Brain Pathol 1999;9:69-92.
76.
Calabrese V, Bella R, Testa D, Spadaro F, Scrofani A, Rizza V, Pennisi G: Increased cerebrospinal fluid and plasma levels of ultraweak chemiluminescence are associated with changes in the thiol pool and lipid-soluble fluorescence in multiple sclerosis: the pathogenic role of oxidative stress. Drugs Exp Clin Res 1998,24:125-131.
77.
Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H: Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2002;47:707-717.
78.
Holmes S, Abbassi B, Su C, Singh M, Cunningham RL: Oxidative stress defines the neuroprotective or neurotoxic properties of androgens in immortalized female rat dopaminergic neuronal cells. Endocrinology 2013;154:4281-4292.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.