Introduction: Globally, chronic kidney disease (CKD) is a common condition associated with several complications and high mortality. Early detection and monitoring of CKD is important for prolonging healthy life expectancy. Salivary pH is reported to increase in patients with chronic renal failure; however, the association between salivary pH and the estimated glomerular filtration rate (eGFR) status, which is usually considered to assess kidney function in clinical settings, has not been adequately studied. Therefore, this study aimed to examine the association between salivary pH and eGFR through multivariate analysis. Methods: We conducted a cross-sectional study using the data from a community-based cohort study conducted between 2017 and 2019 in Japan. We aimed to develop a prediction model to determine the eGFR status using salivary pH, instead of blood urea nitrogen (BUN), in combination with self-reported information (age, sex, body mass index, disease history, medication, and lifestyle) in 1,056 subjects (433 men and 623 women) who participated in the study in 2017. We first identified the logistic model including several explanatory variables in addition to BUN (BUN model) and also developed the logistic model that replaced BUN with salivary pH (pH model). We examined the predictive accuracy of the two developed models using the validation data of 298 subjects (116 men and 182 women) who participated in the study in 2019. Results: BUN and salivary pH were significantly associated with the eGFR status (odds ratio [ORs]: 1.24, 95% confidence interval [CI]: 1.17–1.32, p < 0.001 for BUN; ORs: 0.96, 95% CI: 0.94–0.98, p < 0.001 for salivary pH, respectively). The developed pH model included age, kidney disease history, diabetes history, habitual medication for hypertension, habitual alcohol consumption status, and habitual exercise status in addition to salivary pH. The pH model showed accuracy comparable to that of the BUN model in determining the eGFR status (area under the curve for the pH and BUN models was 0.796 and 0.799, respectively; p = 0.933). Conclusion: This study clarified the association between salivary pH and the eGFR status.

1.
Eckardt
K-U
,
Coresh
J
,
Devuyst
O
,
Johnson
RJ
,
Köttgen
A
,
Levey
AS
, et al
.
Evolving importance of kidney disease: from subspecialty to global health burden
.
Lancet
.
2013
;
382
(
9887
):
158
69
.
2.
Levin
A
,
Tonelli
M
,
Bonventre
J
,
Coresh
J
,
Donner
J-A
,
Fogo
AB
, et al
.
Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy
.
Lancet
.
2017
;
390
(
10105
):
1888
917
.
3.
Murton
M
,
Goff-Leggett
D
,
Bobrowska
A
,
Garcia Sanchez
JJ
,
James
G
,
Wittbrodt
E
, et al
.
Burden of chronic kidney disease by KDIGO categories of glomerular filtration rate and albuminuria: a systematic review
.
Adv Ther
.
2021
;
38
(
1
):
180
200
.
4.
Shlipak
MG
,
Tummalapalli
SL
,
Boulware
LE
,
Grams
ME
,
Ix
JH
,
Jha
V
, et al
.
The case for early identification and intervention of chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference
.
Kidney Int
.
2021
;
99
(
1
):
34
47
.
5.
Stevens
PE
,
Ahmed
SB
,
Carrero
JJ
,
Foster
B
,
Francis
A
,
Hall
RK
, et al
.
KDIGO 2024 clinical Practice guideline for the evaluation and management of chronic kidney disease
.
Kidney Int
.
2024
;
105
(
4
):
S117
314
.
6.
Chronic Kidney Disease Prognosis Consortium
;
Matsushita
K
,
van der Velde
M
,
Astor
BC
,
Woodward
M
,
Levey
AS
, et al
.
Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis
.
Lancet
.
2010
;
375
(
9731
):
2073
81
.
7.
Writing Group for the CKD Prognosis Consortium
;
Grams
ME
,
Coresh
J
,
Matsushita
K
,
Ballew
SH
,
Sang
Y
, et al
.
Estimated glomerular filtration rate, albuminuria, and adverse outcomes: an individual-participant data meta-analysis
.
JAMA
.
2023
;
330
(
13
):
1266
77
.
8.
Nagai
K
,
Asahi
K
,
Iseki
K
,
Yamagata
K
.
Estimating the prevalence of definitive chronic kidney disease in the Japanese general population
.
Clin Exp Nephrol
.
2021
;
25
(
8
):
885
92
.
9.
Tangri
N
,
Moriyama
T
,
Schneider
MP
,
Virgitti
JB
,
De Nicola
L
,
Arnold
M
, et al
.
Prevalence of undiagnosed stage 3 chronic kidney disease in France, Germany, Italy, Japan and the USA: results from the multinational observational REVEAL-CKD study
.
BMJ Open
.
2023
;
13
(
5
):
e067386
.
10.
Curtis
S
,
Komenda
P
.
Screening for chronic kidney disease: moving toward more sustainable health care
.
Curr Opin Nephrol Hypertens
.
2020
;
29
(
3
):
333
8
.
11.
Li
PK
,
Garcia-Garcia
G
,
Lui
SF
,
Andreoli
S
,
Fung
WW
,
Hradsky
A
, et al
.
Kidney health for everyone everywhere - from prevention to detection and equitable access to care
.
Blood Purif
.
2021
;
50
(
1
):
1
8
.
12.
Samir
AE
,
Allegretti
AS
,
Zhu
Q
,
Dhyani
M
,
Anvari
A
,
Sullivan
DA
, et al
.
Shear wave elastography in chronic kidney disease: a pilot experience in native kidneys
.
BMC Nephrol
.
2015
;
16
:
119
.
13.
Nalewajska
M
,
Gurazda
K
,
Marchelek-Myśliwiec
M
,
Pawlik
A
,
Dziedziejko
V
.
The role of endocan in selected kidney diseases
.
Int J Mol Sci
.
2020
;
21
(
17
):
6119
.
14.
Bae
SH
,
Lee
EJ
,
Hwang
J
,
Hong
SS
,
Chang
YW
,
Nam
B
.
Novel non-invasive and quantitative assessment of the renal function of transplanted kidneys using Doppler ultrasonography with the vascular index of superb microvascular imaging
.
Ultrasonography
.
2025
;
44
(
2
):
160
9
.
15.
Kademani
SP
,
Nelaturi
P
,
Kalidas
SS
,
Ballambattu
VB
,
Sambandam
R
.
Mass spectrometric identification of urinary biomarkers of chronic kidney disease: a proteomic-related preliminary report
.
Indian J Nephrol
.
2025
;
35
(
2
):
253
8
.
16.
Yoshizawa
JM
,
Schafer
CA
,
Schafer
JJ
,
Farrell
JJ
,
Paster
BJ
,
Wong
DT
.
Salivary biomarkers: toward future clinical and diagnostic utilities
.
Clin Microbiol Rev
.
2013
;
26
(
4
):
781
91
.
17.
Wang
J
,
Schipper
HM
,
Velly
AM
,
Mohit
S
,
Gornitsky
M
.
Salivary biomarkers of oxidative stress: a critical review
.
Free Radic Biol Med
.
2015
;
85
:
95
104
.
18.
Zhang
CZ
,
Cheng
XQ
,
Li
JY
,
Zhang
P
,
Yi
P
,
Xu
X
, et al
.
Saliva in the diagnosis of diseases
.
Int J Oral Sci
.
2016
;
8
(
3
):
133
7
.
19.
Lu
YP
,
Huang
JW
,
Lee
IN
,
Weng
RC
,
Lin
MY
,
Yang
JT
, et al
.
A portable system to monitor saliva conductivity for dehydration diagnosis and kidney healthcare
.
Sci Rep
.
2019
;
9
(
1
):
14771
.
20.
Zúñiga
ME
,
Estremadoyro
LO
,
León
CP
,
Huapaya
JA
,
Cieza
JA
.
Validation of the salivary urea test as a method to diagnose chronic kidney disease
.
J Nephrol
.
2012
;
25
(
3
):
431
6
.
21.
Lasisi
TJ
,
Raji
YR
,
Salako
BL
.
Salivary creatinine and urea analysis in patients with chronic kidney disease: a case control study
.
BMC Nephrol
.
2016
;
17
:
10
.
22.
Evans
R
,
Calice-Silva
V
,
Raimann
JG
,
Hemmila
U
,
Craik
A
,
Mtekateka
M
, et al
.
Diagnostic performance of a saliva urea nitrogen dipstick to detect kidney disease in Malawi
.
Kidney Int Rep
.
2017
;
2
(
2
):
219
27
.
23.
Pham
TAV
.
Validation of the salivary urea and creatinine tests as screening methods of chronic kidney disease in Vietnamese patients
.
Acta Odontol Scand
.
2017
;
75
(
8
):
551
6
.
24.
Nagarathinam
AE
,
Dineshkumar
T
,
Rajkumar
K
,
Rameshkumar
A
,
Shruthi
TA
,
Alzahrani
KJ
, et al
.
Validation of diagnostic utility of salivary urea in patients with chronic kidney disease in Chennai: a cross-sectional study
.
Niger J Clin Pract
.
2023
;
26
(
12
):
1868
75
.
25.
Lăzureanu
PC
,
Popescu
F
,
Tudor
A
,
Stef
L
,
Negru
AG
,
Mihăilă
R
.
Saliva pH and flow rate in patients with periodontal disease and associated cardiovascular disease
.
Med Sci Monit
.
2021
;
27
:
e931362
.
26.
Arroyo
MJ
,
Escobedo
P
,
Ruiz-García
I
,
Palma
AJ
,
Santoyo
F
,
Ortega-Muñoz
M
, et al
.
POC device for rapid oral pH determination based on a smartphone platform
.
Mikrochim Acta
.
2024
;
191
(
3
):
134
.
27.
Marques
RCR
,
da Silva
JR
,
Vieira Lima
CP
,
Stefani
CM
,
Damé-Teixeira
N
.
Salivary parameters of adults with diabetes mellitus: a systematic review and meta-analysis
.
Oral Surg Oral Med Oral Pathol Oral Radiol
.
2022
;
134
(
2
):
176
89
.
28.
Tomás
I
,
Marinho
JS
,
Limeres
J
,
Santos
MJ
,
Araújo
L
,
Diz
P
.
Changes in salivary composition in patients with renal failure
.
Arch Oral Biol
.
2008
;
53
(
6
):
528
32
.
29.
Shetty
P
,
Hegde
M
,
Eraly
S
.
Evaluation of salivary parameters and dental status in adult hemodialysis patients in an Indian population
.
J Clin Exp Dent
.
2018
;
10
(
5
):
e419
24
.
30.
Marinoski
J
,
Bokor-Bratic
M
,
Mitic
I
,
Cankovic
M
.
Oral mucosa and salivary findings in non-diabetic patients with chronic kidney disease
.
Arch Oral Biol
.
2019
;
102
:
205
11
.
31.
Tong
P
,
Yuan
C
,
Sun
X
,
Yue
Q
,
Wang
X
,
Zheng
S
.
Identification of salivary peptidomic biomarkers in chronic kidney disease patients undergoing haemodialysis
.
Clin Chim Acta
.
2019
;
489
:
154
61
.
32.
Nakaji
S
,
Ihara
K
,
Sawada
K
,
Parodi
S
,
Umeda
T
,
Takahashi
I
, et al
.
Social innovation for life expectancy extension utilizing a platform-centered system used in the Iwaki health promotion project: a protocol paper
.
SAGE Open Med
.
2021
;
9
:
20503121211002606
.
33.
Nishinaga
E
,
Uchiyama
C
,
Maki
R
,
Saito
K
,
Hukasawa
T
,
Suzuki
N
, et al
.
Development of comprehensive salivary test system: validity and reliability of a newly developed salivary multi-test system (AL-55) compared with standard methods
.
Nihon Shika Hozongakkai Zassi
.
2015
;
58
:
321
30
.
34.
Steyerberg
EW
,
Harrell
FE
Jr
,
Borsboom
GJ
,
Eijkemans
MJ
,
Vergouwe
Y
,
Habbema
JD
.
Internal validation of predictive models: efficiency of some procedures for logistic regression analysis
.
J Clin Epidemiol
.
2001
;
54
(
8
):
774
81
.
35.
Yu
IC
,
Liu
CY
,
Fang
JT
.
Effects of hemodialysis treatment on saliva flow rate and saliva composition during in-center maintenance dialysis: a cross-sectional study
.
Ren Fail
.
2021
;
43
(
1
):
71
8
.
36.
Azevedo
LR
,
De Lima
AAS
,
Machado
MA
,
Grégio
AMT
,
de Almeida
PDV
.
Saliva composition and functions: a comprehensive review
.
J Contemp Dent Pract
.
2008
;
9
(
3
):
72
80
.
37.
Peterson
S
,
Woodhead
J
,
Crall
J
.
Caries resistance in children with chronic renal failure: plaque pH, salivary pH, and salivary composition
.
Pediatr Res
.
1985
;
19
(
8
):
796
9
.
38.
Kho
HS
,
Lee
SW
,
Chung
SC
,
Kim
YK
.
Oral manifestations and salivary flow rate, pH, and buffer capacity in patients with end-stage renal disease undergoing hemodialysis
.
Oral Surgery Oral Medicine Oral Pathology
.
1999
;
88
(
3
):
316
9
.
39.
Kaushik
A
,
Reddy
SS
,
Umesh
L
,
Devi
BK
,
Santana
N
,
Rakesh
N
.
Oral and salivary changes among renal patients undergoing hemodialysis: a cross-sectional study
.
Indian J Nephrol
.
2013
;
23
(
2
):
125
9
.
40.
Xu
F
,
Laguna
L
,
Sarkar
A
.
Aging-related changes in quantity and quality of saliva: where do we stand in our understanding
.
J Texture Stud
.
2019
;
50
(
1
):
27
35
.
41.
Trzcionka
A
,
Twardawa
H
,
Mocny-Pachońska
K
,
Korkosz
R
,
Tanasiewicz
M
.
Oral mucosa status and saliva parameters of multimorbid adult patients diagnosed with end-stage chronic kidney disease
.
Int J Environ Res Public Health
.
2021
;
18
(
23
):
12515
.
42.
Sariri
R
,
Varasteh
A
,
Erfani
A
.
Alternations in salivary glucose during ramadan fasting
.
Health
.
2010
;
02
(
07
):
769
72
.
43.
Besbes
A
,
Khemiss
M
,
Bragazzi
N
,
Ben Saad
H
.
The impacts of ramadan intermittent fasting on saliva flow-rate and metabolic data: a systematic review
.
Front Nutr
.
2022
;
9
:
873502
.
44.
Suzuki
D
,
Yamada
SI
,
Sakurai
A
,
Karasawa
I
,
Kondo
E
,
Sakai
H
, et al
.
Correlations between the properties of saliva and metabolic syndrome: a prospective observational study
.
Medicine (Baltim)
.
2020
;
99
(
51
):
e23688
.
45.
O’Seaghdha
CM
,
Lyass
A
,
Massaro
JM
,
Meigs
JB
,
Coresh
J
,
D’Agostino
RB
, et al
.
A risk score for chronic kidney disease in the general population
.
Am J Med
.
2012
;
125
(
3
):
270
7
.
46.
Gheewala
PA
,
Peterson
GM
,
Zaidi
STR
,
Jose
MD
,
Castelino
RL
.
Evaluation of a chronic kidney disease risk assessment service in community pharmacies
.
Nephrology
.
2019
;
24
(
3
):
301
7
.
47.
Thomas
DR
,
Tariq
SH
,
Makhdomm
S
,
Haddad
R
,
Moinuddin
A
.
Physician misdiagnosis of dehydration in older adults
.
J Am Med Dir Assoc
.
2004
;
5
(
2 Suppl l
):
S30
4
.
48.
Collins
GS
,
Reitsma
JB
,
Altman
DG
,
Moons
KG
.
Transparent Reporting of a multivariable Prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement
.
BMJ
.
2015
;
350
:
g7594
.
You do not currently have access to this content.