Introduction: In phenylketonuria (PKU), toxic phenylalanine (Phe) can harm other organs beyond the brain. Furthermore, the lifelong therapy of PKU consists of consumption of increased amounts of amino-acid mixture that provoke hyperfiltration in the glomeruli. Therefore, the adherence to therapy in PKU might influence the long-term kidney function in PKU patients. Methods: Data from 41 adult, early treated PKU patients were analyzed in this 10-year, retrospective, monocentric study. Two subgroups were created according to their therapy adherence: one with long-term blood Phe levels in the therapeutic range (<600 µmol/L), and one with suboptimal blood Phe levels. Renal function and metabolic parameters were collected over 10 years. Kidney function parameters were compared between the two groups and associations between blood Phe levels and kidney function were tested. Results: After 10 years, serum creatinine levels (p = 0.369) and estimated glomerular filtration rate (eGFR) (p = 0.723) did not change significantly from baseline in the good therapeutic group. The suboptimal therapeutic group’s eGFR decreased in the same period (from 110.4 ± 14 mL/min/1.73 m2 to 94.2 ± 16 mL/min/1.73 m2, p = 0.017). At 10 years, the suboptimal therapeutic group had an increased serum creatinine level (81 ± 14.4 μmol/L vs. 71.5 ± 13 μmol/L, p = 0.038), and a decreased eGFR (94.2 ± 16 mL/min/1.73 m2 vs. 103.3 ± 13 mL/min/1.73 m2p = 0.031) compared to the good adhering group. Significant negative correlation between Phe levels and eGFR (r = −0.41, p = 0.008) was observed. Conclusion: Long-term suboptimal therapy adherence in PKU patients with high blood Phe levels may lead to deterioration in kidney function.

Foreman PK, Margulis AV, Alexander K, Shediac R, Calingaert B, Harding A, et al. Birth prevalence of phenylalanine hydroxylase deficiency: a systematic literature review and meta-analysis. Orphanet J Rare Dis. 2021;16(1):253.
van Spronsen FJ, Blau N, Harding C, Burlina A, Longo N, Bosch AM. Phenylketonuria. Nat Rev Dis Primers. 2021;7(1):36.
Hufton SE, Jennings IG, Cotton RG. Structure and function of the aromatic amino acid hydroxylases. Biochem J. 1995;311(Pt 2):353–66.
Koch R, Burton B, Hoganson G, Peterson R, Rhead W, Rouse B, et al. Phenylketonuria in adulthood: a collaborative study. J Inherit Metab Dis. 2002;25(5):333–46.
Moyle JJ, Fox AM, Arthur M, Bynevelt M, Burnett JR. Meta-analysis of neuropsychological symptoms of adolescents and adults with PKU. Neuropsychol Rev. 2007;17(2):91–101.
Macleod EL, Ney DM. Nutritional management of phenylketonuria. Ann Nestle Eng. 2010;68(2):58–69.
Singh RH, Rohr F, Frazier D, Cunningham A, Mofidi S, Ogata B, et al. Recommendations for the nutrition management of phenylalanine hydroxylase deficiency. Genet Med. 2014;16(2):121–31.
Camp KM, Parisi MA, Acosta PB, Berry GT, Bilder DA, Blau N, et al. Phenylketonuria scientific review conference: state of the science and future research needs. Mol Genet Metab. 2014;112(2):87–122.
MacDonald A, van Wegberg AMJ, Ahring K, Beblo S, Bélanger-Quintana A, Burlina A, et al. PKU dietary handbook to accompany PKU guidelines. Orphanet J Rare Dis. 2020;15(1):171.
Sumánszki C, Barta AG, Reismann P. Phenylketonuria felnőttkorban. Orv Hetil. 2017;158(47):1857–63.
van Wegberg AMJ, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, et al. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis. 2017;12(1):162.
Vockley J, Andersson HC, Antshel KM, Braverman NE, Burton BK, Frazier DM, et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med. 2014;16(2):188–200.
Schuler A, Somogyi C, Toros I, Nagy A, Kiss E, Varadi I, et al. Twenty years of experience with phenylketonuria in Hungary. Int Pediatr. 1996(11):114–7.
Joint WHO/FAO/UNU Expert Consultation. Protein and amino acid requirements in human nutrition. World Health Organ Tech Rep Ser. 2007(935):1–265, [back cover].
MacDonald A, Singh RH, Rocha JC, van Spronsen FJ. Optimising amino acid absorption: essential to improve nitrogen balance and metabolic control in phenylketonuria. Nutr Res Rev. 2019;32(1):70–8.
Bilancio G, Cavallo P, Ciacci C, Cirillo M. Dietary protein, kidney function and mortality: review of the evidence from epidemiological studies. Nutrients. 2019;11(1):196.
Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med. 1982;307(11):652–9.
Cortinovis M, Perico N, Ruggenenti P, Remuzzi A, Remuzzi G. Glomerular hyperfiltration. Nat Rev Nephrol. 2022;18(7):435–51.
Oba R, Kanzaki G, Sasaki T, Okabayashi Y, Haruhara K, Koike K, et al. Dietary protein intake and single-nephron glomerular filtration rate. Nutrients. 2020;12(9):2549.
Castellino P, Levin R, Shohat J, DeFronzo RA. Effect of specific amino acid groups on renal hemodynamics in humans. Am J Physiol. 1990;258(4 Pt 2):F992–7.
Gabbai FB. The role of renal response to amino acid infusion and oral protein load in normal kidneys and kidney with acute and chronic disease. Curr Opin Nephrol Hypertens. 2018;27(1):23–9.
Peters H, Border WA, Rückert M, Krämer S, Neumayer HH, Noble NA. L-arginine supplementation accelerates renal fibrosis and shortens life span in experimental lupus nephritis. Kidney Int. 2003;63(4):1382–92.
Galera SC, Fechine FV, Teixeira MJ, Coelho ZC, de Vasconcelos RC, de Vasconcelos PR. The safety of oral use of L-glutamine in middle-aged and elderly individuals. Nutrition. 2010;26(4):375–81.
Davani-Davari D, Karimzadeh I, Sagheb MM, Khalili H. The renal safety of L-carnitine, L-arginine, and glutamine in athletes and bodybuilders. J Ren Nutr. 2019;29(3):221–34.
Stroup BM, Sawin EA, Murali SG, Binkley N, Hansen KE, Ney DM. Amino acid medical foods provide a high dietary acid load and increase urinary excretion of renal net acid, calcium, and magnesium compared with glycomacropeptide medical foods in phenylketonuria. J Nutr Metab. 2017;2017:1909101.
Burton BK, Jones KB, Cederbaum S, Rohr F, Waisbren S, Irwin DE, et al. Prevalence of comorbid conditions among adult patients diagnosed with phenylketonuria. Mol Genet Metab. 2018;125(3):228–34.
Hennermann JB, Roloff S, Gellermann J, Vollmer I, Windt E, Vetter B, et al. Chronic kidney disease in adolescent and adult patients with phenylketonuria. J Inherit Metab Dis. 2013;36(5):747–56.
Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.
Stroup BM, Murali SG, Schwahn DJ, Sawin EA, Lankey EM, Bächinger HP, et al. Sex effects of dietary protein source and acid load on renal and bone status in the Pah(enu2) mouse model of phenylketonuria. Physiol Rep. 2019;7(20):e14251.
Cho E, Choi SJ, Kang DH, Kalantar-Zadeh K, Ko GJ. Revisiting glomerular hyperfiltration and examining the concept of high dietary protein-related nephropathy in athletes and bodybuilders. Curr Opin Nephrol Hypertens. 2022;31(1):18–25.
Coppolino G, Leonardi G, Andreucci M, Bolignano D. Oxidative stress and kidney function: a brief update. Curr Pharm Des. 2018;24(40):4794–9.
Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol. 2012;8(5):293–300.
Sirtori LR, Dutra-Filho CS, Fitarelli D, Sitta A, Haeser A, Barschak AG, et al. Oxidative stress in patients with phenylketonuria. Biochim Biophys Acta. 2005;1740(1):68–73.
Sierra C, Vilaseca MA, Moyano D, Brandi N, Campistol J, Lambruschini N, et al. Antioxidant status in hyperphenylalaninemia. Clin Chim Acta. 1998;276(1):1–9.
Sitta A, Barschak AG, Deon M, Terroso T, Pires R, Giugliani R, et al. Investigation of oxidative stress parameters in treated phenylketonuric patients. Metab Brain Dis. 2006;21(4):287–96.
Zhao YY, Liu J, Cheng XL, Bai X, Lin RC. Urinary metabonomics study on biochemical changes in an experimental model of chronic renal failure by adenine based on UPLC Q-TOF/MS. Clin Chim Acta. 2012;413(5–6):642–9.
You do not currently have access to this content.