Methylguanidine (MG), a toxin reported in uremia, is thought to be a product of creatinine oxidation. This study is designed to demonstrate the role of active oxygen in the oxidation of creatinine under conditions compatible with those found in uremia. MG synthesis is moderately stimulated by the superoxide radical derived from 3 mM hypoxanthine and 0.015 units/ml xanthine oxidase and inhibited by the addition of superoxide dismutase. This is increased markedly by the addition of 0.05% hydrogen peroxide and augmented to about 56,000 times the control rate in the presence of hydroxyl radicals derived from the reaction of 10 mM FeSO4 and 0.05% hydrogen peroxide. In addition, MG synthesis is inhibited by the addition of sorbitol, lactulose or ethanol, the scavengers of hydroxyl radicals. These results indicate that creatinine can be oxidized to MG by various species of active oxygen and that one of the mechanisms of MG synthesis is such oxidation. MG, therefore, may be a useful indicator of peroxidation in vivo.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.