Introduction: ob/ob mice are a leptin-deficient type 2 diabetes mellitus model, which, on a BTBR background, mimics the glomerular pathophysiology of diabetic nephropathy (DN). Since leptin deficiency reduces blood pressure (BP) and endothelial nitric oxide synthase (eNOS) lowers BP and is kidney protective, we attempted to develop a more robust DN model by introducing eNOS deficiency in BTBR ob/ob mice. Methods: Six experimental groups included littermate male and female BTBR ob/ob or wild-type for ob (control) as well as wild-type (WT), heterozygote (HET), or knockout (KO) for eNOS. Systolic BP (by automated tail-cuff) and GFR (by FITC-sinistrin plasma kinetics) were determined in awake mice at 27–30 weeks of age, followed by molecular and histological kidney analyses. Results: Male and female ob/ob WT presented hyperglycemia and larger body and kidney weight, GFR, glomerular injury, and urine albumin to creatinine ratio (UACR) despite modestly lower BP versus control WT. These effects were associated with a higher tubular injury score and renal mRNA expression of NGAL only in males, whereas female ob/ob WT unexpectedly had lower KIM-1 and COL1A1 expression versus control WT, indicating sex differences. HET for eNOS did not consistently alter BP or renal outcome in control or ob/ob. In comparison, eNOS KO increased BP (15–25 mm Hg) and worsened renal markers of injury, inflammation and fibrosis, GFR, UACR, and survival rates, as observed in control and, more pronouncedly, in ob/ob mice and independent of sex. Conclusions: Deletion, but not heterozygosity, of eNOS raises blood pressure and aggravates nephropathy in BTBR ob/ob mice.

1.
Brosius
FC
III
,
Alpers
CE
,
Bottinger
EP
,
Breyer
MD
,
Coffman
TM
,
Gurley
SB
, et al
.
Mouse models of diabetic nephropathy
.
J Am Soc Nephrol
.
2009
;
20
(
12
):
2503
12
. .
2.
Hudkins
KL
,
Pichaiwong
W
,
Wietecha
T
,
Kowalewska
J
,
Banas
MC
,
Spencer
MW
, et al
.
BTBR Ob/Ob mutant mice model progressive diabetic nephropathy
.
J Am Soc Nephrol
.
2010
;
21
(
9
):
1533
42
. .
3.
Bosma
RJ
,
Krikken
JA
,
Homan van der Heide
JJ
,
de Jong
PE
,
Navis
GJ
.
Obesity and renal hemodynamics
.
Contrib Nephrol
.
2006
;
151
:
184
202
. .
4.
Vallon
V
,
Komers
R
.
Pathophysiology of the diabetic kidney
.
Compr Physiol
.
2011
;
1
(
3
):
1175
232
. .
5.
Maric-Bilkan
C
.
Obesity and diabetic kidney disease
.
Med Clin North Am
.
2013
;
97
(
1
):
59
74
. .
6.
Warren
AM
,
Knudsen
ST
,
Cooper
ME
.
Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies
.
Expert Opin Ther Targets
.
2019
;
23
(
7
):
579
91
. .
7.
Poetsch
MS
,
Strano
A
,
Guan
K
.
Role of leptin in cardiovascular diseases
.
Front Endocrinol
.
2020
;
11
:
354
. .
8.
Daiber
A
,
Xia
N
,
Steven
S
,
Oelze
M
,
Hanf
A
,
Kroller-Schon
S
, et al
.
New therapeutic implications of endothelial nitric oxide synthase (eNOS) function/dysfunction in cardiovascular disease
.
Int J Mol Sci
.
2019
;
20
(
1
):
187
. .
9.
Takahashi
T
,
Harris
RC
.
Role of endothelial nitric oxide synthase in diabetic nephropathy: lessons from diabetic eNOS knockout mice
.
J Diabetes Res
.
2014
;
2014
:
590541
. .
10.
Mohan
S
,
Reddick
RL
,
Musi
N
,
Horn
DA
,
Yan
B
,
Prihoda
TJ
, et al
.
Diabetic eNOS knockout mice develop distinct macro- and microvascular complications
.
Lab Invest
.
2008
;
88
(
5
):
515
28
. .
11.
Pill
J
,
Kraenzlin
B
,
Jander
J
,
Sattelkau
T
,
Sadick
M
,
Kloetzer
HM
, et al
.
Fluorescein-labeled sinistrin as marker of glomerular filtration rate
.
Eur J Med Chem
.
2005
;
40
(
10
):
1056
61
. .
12.
Nespoux
J
,
Patel
R
,
Hudkins
KL
,
Huang
W
,
Freeman
B
,
Kim
Y
, et al
.
Gene deletion of the Na-glucose cotransporter SGLT1 ameliorates kidney recovery in a murine model of acute kidney injury induced by ischemia-reperfusion
.
Am J Physiol Renal Physiol
.
2019
;
316
:
F1201
10
. .
13.
Song
P
,
Huang
W
,
Onishi
A
,
Patel
R
,
Kim
YC
,
van Ginkel
C
, et al
.
Knockout of Na(+)-glucose cotransporter SGLT1 mitigates diabetes-induced upregulation of nitric oxide synthase NOS1 in the macula densa and glomerular hyperfiltration
.
Am J Physiol Renal Physiol
.
2019
;
317
(
1
):
F207
17
. .
14.
Onishi
A
,
Fu
Y
,
Patel
R
,
Darshi
M
,
Crespo-Masip
M
,
Huang
W
, et al
.
A role for tubular Na(+)/H(+) exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin
.
Am J Physiol Renal Physiol
.
2020
;
319
(
4
):
F712
28
. .
15.
Krege
JH
,
Hodgin
JB
,
Hagaman
JR
,
Smithies
O
.
A noninvasive computerized tail-cuff system for measuring blood pressure in mice
.
Hypertension
.
1995
;
25
(
5
):
1111
5
. .
16.
Meneton
P
,
Ichikawa
I
,
Inagami
T
,
Schnermann
J
.
Renal physiology of the mouse
.
Am J Physiol Renal Physiol
.
2000
;
278
(
3
):
F339
51
. .
17.
Navarro Garrido
A
,
Kim
YC
,
Oe
Y
,
Zhang
H
,
Crespo-Masip
M
,
Goodluck
HA
, et al
.
Aristolochic acid-induced nephropathy is attenuated in mice lacking the neutral amino acid transporter B(0)AT1 (Slc6a19)
.
Am J Physiol Renal Physiol
.
2022
;
323
(
4
):
F455
67
. .
18.
Nespoux
J
,
Patel
R
,
Zhang
H
,
Huang
W
,
Freeman
B
,
Sanders
PW
, et al
.
Gene knockout of the Na(+)-glucose cotransporter SGLT2 in a murine model of acute kidney injury induced by ischemia-reperfusion
.
Am J Physiol Renal Physiol
.
2020
;
318
(
5
):
F1100
12
. .
19.
Zhou
XJ
,
Vaziri
ND
,
Zhang
J
,
Wang
HW
,
Wang
XQ
.
Association of renal injury with nitric oxide deficiency in aged SHR: prevention by hypertension control with AT1 blockade
.
Kidney Int
.
2002
;
62
(
3
):
914
21
. .
20.
Braun
MC
,
Herring
SM
,
Gokul
N
,
Monita
M
,
Bell
R
,
Hicks
MJ
, et al
.
Hypertensive renal disease: susceptibility and resistance in inbred hypertensive rat lines
.
J Hypertens
.
2013
;
31
(
10
):
2050
9
. .
21.
Steel
RGD
,
Torrie
JH
,
Dickey
DA
.
Principles and procedures of statistics
.
New York
:
McGraw-Hill
;
1997
.
22.
Messow
C
,
Gartner
K
,
Hackbarth
H
,
Kangaloo
M
,
Lunebrink
L
.
Sex differences in kidney morphology and glomerular filtration rate in mice
.
Contrib Nephrol
.
1980
;
19
:
51
5
.
23.
Hackbarth
H
,
Hackbarth
D
.
Genetic analysis of renal function in mice. 1. Glomerular filtration rate and its correlation with body and kidney weight
.
Lab Anim
.
1981
;
15
(
3
):
267
72
. .
24.
Tao
Y
,
Young-Stubbs
C
,
Yazdizadeh Shotorbani
P
,
Su
DM
,
Mathis
KW
,
Ma
R
.
Sex and strain differences in renal hemodynamics in mice
.
Physiol Rep
.
2023
;
11
(
6
):
e15644
. .
25.
Nakayama
T
,
Sato
W
,
Kosugi
T
,
Zhang
L
,
Campbell-Thompson
M
,
Yoshimura
A
, et al
.
Endothelial injury due to eNOS deficiency accelerates the progression of chronic renal disease in the mouse
.
Am J Physiol Renal Physiol
.
2009
;
296
(
2
):
F317
27
. .
26.
Sogawa
Y
,
Nagasu
H
,
Itano
S
,
Kidokoro
K
,
Taniguchi
S
,
Takahashi
M
, et al
.
The eNOS-NO pathway attenuates kidney dysfunction via suppression of inflammasome activation in aldosterone-induced renal injury model mice
.
PLoS One
.
2018
;
13
(
10
):
e0203823
. .
27.
Zhao
HJ
,
Wang
S
,
Cheng
H
,
Zhang
MZ
,
Takahashi
T
,
Fogo
AB
, et al
.
Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice
.
J Am Soc Nephrol
.
2006
;
17
(
10
):
2664
9
. .
28.
Ma
Y
,
Li
W
,
Yazdizadeh Shotorbani
P
,
Dubansky
BH
,
Huang
L
,
Chaudhari
S
, et al
.
Comparison of diabetic nephropathy between male and female eNOS(−/−) db/db mice
.
Am J Physiol Renal Physiol
.
2019
;
316
(
5
):
F889
97
. .
29.
Gurley
SB
,
Mach
CL
,
Stegbauer
J
,
Yang
J
,
Snow
KP
,
Hu
A
, et al
.
Influence of genetic background on albuminuria and kidney injury in Ins2(+/C96Y) (Akita) mice
.
Am J Physiol Renal Physiol
.
2010
;
298
(
3
):
F788
95
. .
30.
Kanoo
S
,
Goodluck
H
,
Kim
YC
,
Garrido
AN
,
Crespo-Masip
M
,
Zhang
H
, et al
.
Deletion of eNOS enhances kidney injury in BTBR ob/ob mice
.
FASEB J
.
2021
;
35
(
S1
):
S1
. .
You do not currently have access to this content.