Acute kidney injury (AKI) is a common clinical critical disease. Due to its high morbidity, increasing risk of complications, high mortality rate, and high medical costs, it has become a global concern for human health problems. Initially, researchers believed that kidneys have a strong ability to regenerate and repair, but studies over the past 20 years have found that kidneys damaged by AKI are often incomplete or even unable to repair. Even when serum creatinine returns to baseline levels, renal structural damage persists for a long time, leading to the development of chronic kidney disease (CKD). The mechanism of AKI-to-CKD transition has not been fully elucidated. As an important regulator of gene expression, epigenetic modifications, such as histone modification, DNA methylation, and noncoding RNAs, may play an important role in this process. Alterations in epigenetic modification are induced by hypoxia, thus promoting the expression of inflammatory factor-related genes and collagen secretion. This review elaborated the role of epigenetic modifications in AKI-to-CKD progression, the diagnostic value of epigenetic modifications biomarkers in AKI chronic outcome, and the potential role of targeting epigenetic modifications in the prevention and treatment of AKI to CKD, in order to provide ideas for the subsequent establishment of targeted therapeutic strategies to prevent the progression of renal tubular-interstitial fibrosis.

1.
Büttner
S
,
Stadler
A
,
Mayer
C
,
Patyna
S
,
Betz
C
,
Senft
C
,
Incidence, risk factors, and outcome of acute kidney injury in neurocritical care
.
J Intensive Care Med
.
2020 Apr
;
35
(
4
):
338
46
. .
2.
Lewington
AJ
,
Cerdá
J
,
Mehta
RL
.
Raising awareness of acute kidney injury: a global perspective of a silent killer
.
Kidney Int
.
2013 Sep
;
84
(
3
):
457
67
. .
3.
Mehta
RL
,
Cerdá
J
,
Burdmann
EA
,
Tonelli
M
,
García-García
G
,
Jha
V
,
International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology
.
Lancet
.
2015 Jun 27
;
385
(
9987
):
2616
43
. .
4.
Kurzhagen
JT
,
Dellepiane
S
,
Cantaluppi
V
,
Rabb
H
.
AKI: an increasingly recognized risk factor for CKD development and progression
.
J Nephrol
.
2020 Dec
;
33
(
6
):
1171
87
. .
5.
Chawla
LS
,
Bellomo
R
,
Bihorac
A
,
Goldstein
SL
,
Siew
ED
,
Bagshaw
SM
,
Acute kidney disease and renal recovery: consensus report of the acute disease quality initiative (ADQI) 16 workgroup
.
Nat Rev Nephrol
.
2017 Apr
;
13
(
4
):
241
57
. .
6.
Hannan
M
,
Ansari
S
,
Meza
N
,
Anderson
AH
,
Srivastava
A
,
Waikar
S
,
Risk factors for CKD progression: overview of findings from the CRIC study
.
Clin J Am Soc Nephrol
.
2021
;
16
(
4
):
648
59
.
7.
Jiang
M
,
Bai
M
,
Lei
J
,
Xie
Y
,
Xu
S
,
Jia
Z
,
Mitochondrial dysfunction and the AKI to CKD transition
.
Am J Physiol Renal Physiol
.
2020 Dec 1
;
319
(
6
):
F1105
16
. .
8.
Li
C
,
Shen
Y
,
Huang
L
,
Liu
C
,
Wang
J
.
Senolytic therapy ameliorates renal fibrosis postacute kidney injury by alleviating renal senescence
.
Faseb J
.
2021 Jan
;
35
(
1
):
e21229
. .
9.
Wen
Y
,
Parikh
CR
.
The aftermath of AKI: recurrent AKI, acute kidney disease, and CKD progression
.
J Am Soc Nephrol
.
2021 Jan
;
32
(
1
):
2
4
. .
10.
Coca
SG
,
Singanamala
S
,
Parikh
CR
.
Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis
.
Kidney Int
.
2012 Mar
;
81
(
5
):
442
8
. .
11.
Li
Z
,
Wang
Y
,
Sun
N
,
Liu
X
,
Song
E
,
Zhang
Z
,
Melatonin therapy protects against renal injury before and after release of bilateral ureteral obstruction in rats
.
Life Sci
.
2019 Jul 15
;
229
:
104
15
. .
12.
Liu
X
,
Sun
N
,
Mo
N
,
Lu
S
,
Song
E
,
Ren
C
,
Quercetin inhibits kidney fibrosis and the epithelial to mesenchymal transition of the renal tubular system involving suppression of the Sonic Hedgehog signaling pathway
.
Food Funct
.
2019 Jun 19
;
10
(
6
):
3782
97
. .
13.
Fiorentino
M
,
Grandaliano
G
,
Gesualdo
L
,
Castellano
G
.
Acute kidney injury to chronic kidney disease transition
.
Contrib Nephrol
.
2018
;
193
:
45
54
. .
14.
Guzzi
F
,
Cirillo
L
,
Roperto
RM
,
Romagnani
P
,
Lazzeri
E
.
Molecular mechanisms of the acute kidney injury to chronic kidney disease transition: an updated view
.
Int J Mol Sci
.
2019 Oct 6
;
20
(
19
):
4941
. .
15.
Ogbadu
J
,
Singh
G
,
Aggarwal
D
.
Factors affecting the transition of acute kidney injury to chronic kidney disease: potential mechanisms and future perspectives
.
Eur J Pharmacol
.
2019 Dec 15
;
865
:
172711
. .
16.
Ullah
MM
,
Basile
DP
.
Role of renal hypoxia in the progression from acute kidney injury to chronic kidney disease
.
Semin Nephrol
.
2019 Nov
;
39
(
6
):
567
80
. .
17.
do Valle Duraes
F
,
Lafont
A
,
Beibel
M
,
Martin
K
,
Darribat
K
,
Cuttat
R
,
Immune cell landscaping reveals a protective role for regulatory T cells during kidney injury and fibrosis
.
JCI Insight
.
2020 Feb 13
;
5
(
3
):
e130651
. .
18.
Tanaka
S
,
Tanaka
T
,
Nangaku
M
.
Hypoxia as a key player in the AKI-to-CKD transition
.
Am J Physiol Renal Physiol
.
2014 Dec 1
;
307
(
11
):
F1187
95
. .
19.
Tanaka
T
.
Epigenetic changes mediating transition to chronic kidney disease: hypoxic memory
.
Acta Physiol
.
2018 Apr
;
222
(
4
):
e13023
. .
20.
Egger
G
,
Liang
G
,
Aparicio
A
,
Jones
PA
.
Epigenetics in human disease and prospects for epigenetic therapy
.
Nature
.
2004 May 27
;
429
(
6990
):
457
63
. .
21.
Kelsey
G
,
Stegle
O
,
Reik
W
.
Single-cell epigenomics: recording the past and predicting the future
.
Science
.
2017 Oct 6
;
358
(
6359
):
69
75
. .
22.
Feinberg
AP
.
The key role of epigenetics in human disease prevention and mitigation
.
N Engl J Med
.
2018 Apr 5
;
378
(
14
):
1323
34
. .
23.
Lyko
F
.
The DNA methyltransferase family: a versatile toolkit for epigenetic regulation
.
Nat Rev Genet
.
2018 Feb
;
19
(
2
):
81
92
. .
24.
Guo
C
,
Dong
G
,
Liang
X
,
Dong
Z
.
Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications
.
Nat Rev Nephrol
.
2019 Apr
;
15
(
4
):
220
39
. .
25.
Shu
S
,
Wang
Y
,
Zheng
M
,
Liu
Z
,
Cai
J
,
Tang
C
,
Hypoxia and hypoxia-inducible factors in kidney injury and repair
.
Cells
.
2019 Feb 28
;
8
(
3
):
207
. .
26.
Zhang
Y
,
Sun
Z
,
Jia
J
,
Du
T
,
Zhang
N
,
Tang
Y
,
Overview of histone modification
.
Adv Exp Med Biol
.
2021
;
1283
:
1
16
. .
27.
Portela
A
,
Esteller
M
.
Epigenetic modifications and human disease
.
Nat Biotechnol
.
2010 Oct
;
28
(
10
):
1057
68
. .
28.
Zhou
X
,
Zang
X
,
Ponnusamy
M
,
Masucci
MV
,
Tolbert
E
,
Gong
R
,
Enhancer of zeste homolog 2 inhibition attenuates renal fibrosis by maintaining Smad7 and phosphatase and tensin homolog expression
.
J Am Soc Nephrol
.
2016 Jul
;
27
(
7
):
2092
108
. .
29.
Hewitson
TD
,
Holt
SG
,
Tan
SJ
,
Wigg
B
,
Samuel
CS
,
Smith
ER
.
Epigenetic modifications to H3K9 in renal tubulointerstitial cells after unilateral ureteric obstruction and TGF-β1 stimulation
.
Front Pharmacol
.
2017
;
8
:
307
. .
30.
Naito
M
,
Bomsztyk
K
,
Zager
RA
.
Endotoxin mediates recruitment of RNA polymerase II to target genes in acute renal failure
.
J Am Soc Nephrol
.
2008 Jul
;
19
(
7
):
1321
30
. .
31.
Naito
M
,
Bomsztyk
K
,
Zager
RA
.
Renal ischemia-induced cholesterol loading: transcription factor recruitment and chromatin remodeling along the HMG CoA reductase gene
.
Am J Pathol
.
2009 Jan
;
174
(
1
):
54
62
. .
32.
Zager
RA
,
Johnson
AC
.
Renal ischemia-reperfusion injury upregulates histone-modifying enzyme systems and alters histone expression at proinflammatory/profibrotic genes
.
Am J Physiol Renal Physiol
.
2009 May
;
296
(
5
):
F1032
41
. .
33.
Johnson
AC
,
Ware
LB
,
Himmelfarb
J
,
Zager
RA
.
HMG-CoA reductase activation and urinary pellet cholesterol elevations in acute kidney injury
.
Clin J Am Soc Nephrol
.
2011 Sep
;
6
(
9
):
2108
13
. .
34.
Sasaki
K
,
Doi
S
,
Nakashima
A
,
Irifuku
T
,
Yamada
K
,
Kokoroishi
K
,
Inhibition of SET domain-containing lysine methyltransferase 7/9 ameliorates renal fibrosis
.
J Am Soc Nephrol
.
2016 Jan
;
27
(
1
):
203
15
. .
35.
Fontecha-Barriuso
M
,
Martin-Sanchez
D
,
Ruiz-Andres
O
,
Poveda
J
,
Sanchez-Niño
MD
,
Valiño-Rivas
L
,
Targeting epigenetic DNA and histone modifications to treat kidney disease
.
Nephrol Dial Transplant
.
2018 Nov 1
;
33
(
11
):
1875
86
. .
36.
Liang
H
,
Huang
Q
,
Liao
MJ
,
Xu
F
,
Zhang
T
,
He
J
,
EZH2 plays a crucial role in ischemia/reperfusion-induced acute kidney injury by regulating p38 signaling
.
Inflamm Res
.
2019 Apr
;
68
(
4
):
325
36
. .
37.
Yu
C
,
Zhuang
S
.
Histone methyltransferases as therapeutic targets for kidney diseases
.
Front Pharmacol
.
2019
;
10
:
1393
. .
38.
Mimura
I
,
Nangaku
M
,
Kanki
Y
,
Tsutsumi
S
,
Inoue
T
,
Kohro
T
,
Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A
.
Mol Cell Biol
.
2012 Aug
;
32
(
15
):
3018
32
. .
39.
Marumo
T
,
Hishikawa
K
,
Yoshikawa
M
,
Fujita
T
.
Epigenetic regulation of BMP7 in the regenerative response to ischemia
.
J Am Soc Nephrol
.
2008 Jul
;
19
(
7
):
1311
20
. .
40.
Zager
RA
,
Johnson
AC
,
Becker
K
.
Acute unilateral ischemic renal injury induces progressive renal inflammation, lipid accumulation, histone modification, and “end-stage” kidney disease
.
Am J Physiol Renal Physiol
.
2011 Dec
;
301
(
6
):
F1334
45
. .
41.
Levine
MH
,
Wang
Z
,
Bhatti
TR
,
Wang
Y
,
Aufhauser
DD
,
McNeal
S
,
Class-specific histone/protein deacetylase inhibition protects against renal ischemia reperfusion injury and fibrosis formation
.
Am J Transplant
.
2015 Apr
;
15
(
4
):
965
73
. .
42.
Novitskaya
T
,
McDermott
L
,
Zhang
KX
,
Chiba
T
,
Paueksakon
P
,
Hukriede
NA
,
A PTBA small molecule enhances recovery and reduces postinjury fibrosis after aristolochic acid-induced kidney injury
.
Am J Physiol Renal Physiol
.
2014 Mar 1
;
306
(
5
):
F496
504
. .
43.
Skrypnyk
NI
,
Sanker
S
,
Skvarca
LB
,
Novitskaya
T
,
Woods
C
,
Chiba
T
,
Delayed treatment with PTBA analogs reduces postinjury renal fibrosis after kidney injury
.
Am J Physiol Renal Physiol
.
2016 Apr 15
;
310
(
8
):
F705
16
. .
44.
Kinugasa
F
,
Noto
T
,
Matsuoka
H
,
Urano
Y
,
Sudo
Y
,
Takakura
S
,
Prevention of renal interstitial fibrosis via histone deacetylase inhibition in rats with unilateral ureteral obstruction
.
Transpl Immunol
.
2010 May
;
23
(
1–2
):
18
23
. .
45.
Costalonga
EC
,
Silva
FM
,
Noronha
IL
.
Valproic acid prevents renal dysfunction and inflammation in the ischemia-reperfusion injury model
.
Biomed Res Int
.
2016
;
2016
:
5985903
. .
46.
Zhang
H
,
Zhang
W
,
Jiao
F
,
Li
X
,
Zhang
H
,
Wang
L
,
The nephroprotective effect of MS-275 on lipopolysaccharide (LPS)-induced acute kidney injury by inhibiting reactive oxygen species (ROS)-oxidative stress and endoplasmic reticulum stress
.
Med Sci Monit
.
2018 Apr 28
;
24
:
2620
30
. .
47.
Liu
N
,
He
S
,
Ma
L
,
Ponnusamy
M
,
Tang
J
,
Tolbert
E
,
Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling
.
PLoS One
.
2013
;
8
(
1
):
e54001
. .
48.
Tang
J
,
Yan
Y
,
Zhao
TC
,
Gong
R
,
Bayliss
G
,
Yan
H
,
Class I HDAC activity is required for renal protection and regeneration after acute kidney injury
.
Am J Physiol Renal Physiol
.
2014 Aug 1
;
307
(
3
):
F303
16
. .
49.
Xiong
C
,
Guan
Y
,
Zhou
X
,
Liu
L
,
Zhuang
MA
,
Zhang
W
,
Selective inhibition of class IIa histone deacetylases alleviates renal fibrosis
.
Faseb J
.
2019 Jul
;
33
(
7
):
8249
62
. .
50.
Zhang
W
,
Guan
Y
,
Bayliss
G
,
Zhuang
S
.
Class IIa HDAC inhibitor TMP195 alleviates lipopolysaccharide-induced acute kidney injury
.
Am J Physiol Renal Physiol
.
2020 Dec 1
;
319
(
6
):
F1015
26
. .
51.
Chen
F
,
Gao
Q
,
Wei
A
,
Chen
X
,
Shi
Y
,
Wang
H
,
Histone deacetylase 3 aberration inhibits Klotho transcription and promotes renal fibrosis
.
Cell Death Differ
.
2021
;
28
(
3
):
1001
12
.
52.
Chen
X
,
Yu
C
,
Hou
X
,
Li
J
,
Li
T
,
Qiu
A
,
Histone deacetylase 6 inhibition mitigates renal fibrosis by suppressing TGF-β and EGFR signaling pathways in obstructive nephropathy
.
Am J Physiol Renal Physiol
.
2020 Dec 1
;
319
(
6
):
F1003
14
. .
53.
Yin
S
,
Zhang
Q
,
Yang
J
,
Lin
W
,
Li
Y
,
Chen
F
,
TGFβ-incurred epigenetic aberrations of miRNA and DNA methyltransferase suppress Klotho and potentiate renal fibrosis
.
Biochim Biophys Acta Mol Cell Res
.
2017 Jul
;
1864
(
7
):
1207
16
. .
54.
Tikoo
K
,
Ali
IY
,
Gupta
J
,
Gupta
C
.
5-Azacytidine prevents cisplatin induced nephrotoxicity and potentiates anticancer activity of cisplatin by involving inhibition of metallothionein, pAKT and DNMT1 expression in chemical induced cancer rats
.
Toxicol Lett
.
2009 Dec 15
;
191
(
2–3
):
158
66
. .
55.
Chang
YT
,
Yang
CC
,
Pan
SY
,
Chou
YH
,
Chang
FC
,
Lai
CF
,
DNA methyltransferase inhibition restores erythropoietin production in fibrotic murine kidneys
.
J Clin Invest
.
2016 Feb
;
126
(
2
):
721
31
. .
56.
Tampe
B
,
Steinle
U
,
Tampe
D
,
Carstens
JL
,
Korsten
P
,
Zeisberg
EM
,
Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury-to-chronic kidney disease progression
.
Kidney Int
.
2017 Jan
;
91
(
1
):
157
76
. .
57.
Tang
J
,
Zhuang
S
.
Histone acetylation and DNA methylation in ischemia/reperfusion injury
.
Clin Sci
.
2019 Feb 28
;
133
(
4
):
597
609
. .
58.
Hyndman
KA
.
Histone deacetylases in kidney physiology and acute kidney injury
.
Semin Nephrol
.
2020 Mar
;
40
(
2
):
138
47
. .
59.
Hassan
FU
,
Rehman
MS
,
Khan
MS
,
Ali
MA
,
Javed
A
,
Nawaz
A
,
Curcumin as an alternative epigenetic modulator: mechanism of action and potential effects
.
Front Genet
.
2019
;
10
:
514
. .
60.
Li
HF
,
Cheng
CF
,
Liao
WJ
,
Lin
H
,
Yang
RB
.
ATF3-mediated epigenetic regulation protects against acute kidney injury
.
J Am Soc Nephrol
.
2010 Jun
;
21
(
6
):
1003
13
. .
61.
Rodríguez-Romo
R
,
Berman
N
,
Gómez
A
,
Bobadilla
NA
.
Epigenetic regulation in the acute kidney injury to chronic kidney disease transition
.
Nephrology
.
2015 Oct
;
20
(
10
):
736
43
. .
62.
Zager
RA
,
Johnson
AC
,
Andress
D
,
Becker
K
.
Progressive endothelin-1 gene activation initiates chronic/end-stage renal disease following experimental ischemic/reperfusion injury
.
Kidney Int
.
2013 Oct
;
84
(
4
):
703
12
. .
63.
Moore
LD
,
Le
T
,
Fan
G
.
DNA methylation and its basic function
.
Neuropsychopharmacology
.
2013 Jan
;
38
(
1
):
23
38
. .
64.
Parry
A
,
Rulands
S
,
Reik
W
.
Active turnover of DNA methylation during cell fate decisions
.
Nat Rev Genet
.
2021 Jan
;
22
(
1
):
59
66
. .
65.
Zhang
C
,
Liang
Y
,
Lei
L
,
Zhu
G
,
Chen
X
,
Jin
T
,
Hypermethylations of RASAL1 and KLOTHO is associated with renal dysfunction in a Chinese population environmentally exposed to cadmium
.
Toxicol Appl Pharmacol
.
2013 Aug 15
;
271
(
1
):
78
85
. .
66.
Xu
X
,
Tan
X
,
Tampe
B
,
Wilhelmi
T
,
Hulshoff
MS
,
Saito
S
,
High-fidelity CRISPR/Cas9-based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis
.
Nat Commun
.
2018 Aug 29
;
9
(
1
):
3509
. .
67.
Chen
J
,
Zhang
X
,
Zhang
H
,
Liu
T
,
Zhang
H
,
Teng
J
,
Indoxyl sulfate enhance the hypermethylation of Klotho and promote the process of vascular calcification in chronic kidney disease
.
Int J Biol Sci
.
2016
;
12
(
10
):
1236
46
. .
68.
Bechtel
W
,
McGoohan
S
,
Zeisberg
EM
,
Müller
GA
,
Kalbacher
H
,
Salant
DJ
,
Methylation determines fibroblast activation and fibrogenesis in the kidney
.
Nat Med
.
2010 May
;
16
(
5
):
544
50
. .
69.
Liu
Z
,
Wang
Y
,
Shu
S
,
Cai
J
,
Tang
C
,
Dong
Z
.
Non-coding RNAs in kidney injury and repair
.
Am J Physiol Cell Physiol
.
2019 Aug 1
;
317
(
2
):
C177
88
. .
70.
Chen
H
,
Fan
Y
,
Jing
H
,
Tang
S
,
Zhou
J
.
Emerging role of lncRNAs in renal fibrosis
.
Arch Biochem Biophys
.
2020 Oct 15
;
692
:
108530
. .
71.
Fan
Y
,
Chen
H
,
Huang
Z
,
Zheng
H
,
Zhou
J
.
Emerging role of miRNAs in renal fibrosis
.
RNA Biol
.
2020 Jan
;
17
(
1
):
1
12
. .
72.
Yu
TM
,
Palanisamy
K
,
Sun
KT
,
Day
YJ
,
Shu
KH
,
Wang
IK
,
RANTES mediates kidney ischemia reperfusion injury through a possible role of HIF-1α and LncRNA PRINS
.
Sci Rep
.
2016 Jan 4
;
6
:
18424
. .
73.
Jiang
X
,
Li
D
,
Shen
W
,
Shen
X
,
Liu
Y
.
LncRNA NEAT1 promotes hypoxia-induced renal tubular epithelial apoptosis through downregulating miR-27a-3p
.
J Cell Biochem
.
2019 Sep
;
120
(
9
):
16273
82
. .
74.
Tian
X
,
Ji
Y
,
Liang
Y
,
Zhang
J
,
Guan
L
,
Wang
C
.
LINC00520 targeting miR-27b-3p regulates OSMR expression level to promote acute kidney injury development through the PI3K/AKT signaling pathway
.
J Cell Physiol
.
2019 Aug
;
234
(
8
):
14221
33
. .
75.
Tian
H
,
Wu
M
,
Zhou
P
,
Huang
C
,
Ye
C
,
Wang
L
.
The long non-coding RNA MALAT1 is increased in renal ischemia-reperfusion injury and inhibits hypoxia-induced inflammation
.
Ren Fail
.
2018 Nov
;
40
(
1
):
527
33
. .
76.
Bijkerk
R
,
Au
YW
,
Stam
W
,
Duijs
JMGJ
,
Koudijs
A
,
Lievers
E
,
Long non-coding RNAs rian and miat mediate myofibroblast formation in kidney fibrosis
.
Front Pharmacol
.
2019
;
10
:
215
. .
77.
Zhou
X
,
Li
Y
,
Wu
C
,
Yu
W
,
Cheng
F
.
Novel lncRNA XLOC_032768 protects against renal tubular epithelial cells apoptosis in renal ischemia-reperfusion injury by regulating FNDC3B/TGF-β1
.
Ren Fail
.
2020 Nov
;
42
(
1
):
994
1003
. .
78.
Bijkerk
R
,
van Solingen
C
,
de Boer
HC
,
van der Pol
P
,
Khairoun
M
,
de Bruin
RG
,
Hematopoietic microRNA-126 protects against renal ischemia/reperfusion injury by promoting vascular integrity
.
J Am Soc Nephrol
.
2014 Aug
;
25
(
8
):
1710
22
. .
79.
Hao
J
,
Wei
Q
,
Mei
S
,
Li
L
,
Su
Y
,
Mei
C
,
Induction of microRNA-17-5p by p53 protects against renal ischemia-reperfusion injury by targeting death receptor 6
.
Kidney Int
.
2017 Jan
;
91
(
1
):
106
18
. .
80.
Wei
Q
,
Sun
H
,
Song
S
,
Liu
Y
,
Liu
P
,
Livingston
MJ
,
MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury
.
J Clin Invest
.
2018 Dec 3
;
128
(
12
):
5448
64
. .
81.
Chen
W
,
Ruan
Y
,
Zhao
S
,
Ning
J
,
Rao
T
,
Yu
W
,
MicroRNA-205 inhibits the apoptosis of renal tubular epithelial cells via the PTEN/Akt pathway in renal ischemia-reperfusion injury
.
Am J Transl Res
.
2019
;
11
(
12
):
7364
75
.
82.
Lorenzen
JM
,
Kaucsar
T
,
Schauerte
C
,
Schmitt
R
,
Rong
S
,
Hübner
A
,
MicroRNA-24 antagonism prevents renal ischemia reperfusion injury
.
J Am Soc Nephrol
.
2014 Dec
;
25
(
12
):
2717
29
. .
83.
Bhatt
K
,
Wei
Q
,
Pabla
N
,
Dong
G
,
Mi
QS
,
Liang
M
,
MicroRNA-687 induced by hypoxia-inducible factor-1 targets phosphatase and tensin homolog in renal ischemia-reperfusion injury
.
J Am Soc Nephrol
.
2015 Jul
;
26
(
7
):
1588
96
. .
84.
Yuan
J
,
Benway
CJ
,
Bagley
J
,
Iacomini
J
.
MicroRNA-494 promotes cyclosporine-induced nephrotoxicity and epithelial to mesenchymal transition by inhibiting PTEN
.
Am J Transplant
.
2015 Jun
;
15
(
6
):
1682
91
. .
85.
Guan
H
,
Peng
R
,
Mao
L
,
Fang
F
,
Xu
B
,
Chen
M
.
Injured tubular epithelial cells activate fibroblasts to promote kidney fibrosis through miR-150-containing exosomes
.
Exp Cell Res
.
2020 Jul 15
;
392
(
2
):
112007
. .
86.
Huang
SJ
,
Huang
J
,
Yan
YB
,
Qiu
J
,
Tan
RQ
,
Liu
Y
,
The renoprotective effect of curcumin against cisplatin-induced acute kidney injury in mice: involvement of miR-181a/PTEN axis
.
Ren Fail
.
2020 Nov
;
42
(
1
):
350
7
. .
87.
Lv
W
,
Fan
F
,
Wang
Y
,
Gonzalez-Fernandez
E
,
Wang
C
,
Yang
L
,
Therapeutic potential of microRNAs for the treatment of renal fibrosis and CKD
.
Physiol Genomics
.
2018 Jan 1
;
50
(
1
):
20
34
. .
88.
Wang
X
,
Xue
N
,
Zhao
S
,
Shi
Y
,
Ding
X
,
Fang
Y
.
Upregulation of miR-382 contributes to renal fibrosis secondary to aristolochic acid-induced kidney injury via PTEN signaling pathway
.
Cell Death Dis
.
2020 Aug 14
;
11
(
8
):
620
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.